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Multipartite viruses have a genome divided into different disconnected viral particles. A majority of
multipartite viruses infect plants; very few target animals. To understand why, we use a simple, network-
based susceptible-latent-infectious-recovered model. We show both analytically and numerically that,
provided that the average degree of the contact network exceeds a critical value, even in the absence of an
explicit microscopic advantage, multipartite viruses have a lower threshold to colonizing network-
structured populations compared to a well-mixed population. We further corroborate this finding on two-
dimensional lattice networks, which better represent the typical contact structures of plants.
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As themajor cause of epidemics, viruses are posing a great
threat to all living organisms. Among all types of viruses,
multipartite (also named multiparticle, multicomponent, or
multicompartment) viruses possess the strangest genetic
organizations. Unlike other categories, such as nonseg-
mented and segmented viruses whose nucleic acid segments
are encapsidated into a single virion (viral particle) that
propagates as a whole, multipartite viruses have two or more
segmented genomes packaged into separate virions, and each
one of them can propagate independently [1]. Still, the
complete replication cycle of a multipartite virus requires the
full genome so that the concurrent presence of multiple
segments is necessary for a successful infection [2]. This
need for a multiplicity of infection events comes with an
evolutionary disadvantageous cost, and factors counterbal-
ancing it are an area of active research [3].
It has been shown that a large quantity of viruses, about

40% families and 17%species, do havemultipartite genomes
[4]. In the mean time, the number of known multipartite
species is rapidly growing: 48 new species of multipartite
viruses were identified from 2014 to 2015 [4]. All these facts
signal that multipartitism is a successful evolutionary strat-
egy. Apart from the peculiar genetic organization, perhaps
the most striking characteristic about multipartite viruses is
their strong preference for host populations—more than 90%
of known multipartite virus species exclusively target plants
and fungi [1,4], and only very fewof themcan infect animals,
such as the recently discovered Jingmen tick virus [5] and the
Guaico Culex virus [6]. The evolutionary origin of multi-
partite viruses and why they mainly infect plants remain
puzzling even today.
To explain the evolutionary success of multipartitism,

researchers have pointed out several possible advantages.

Still, we lack a complete theory of the evolutionary
advantage of such a strange lifestyle [4]. Researchers have
hypothesized that multipartitism leads to smaller genetic
segments that may have lower mutation probability [7] and
faster replication ability [8], the stability of the capsid would
be higher for smaller virions [9], small segments facilitate
the recombination of genomes in order to adapt new
environment [10], and so on. However, solid experimental
evidence for these possible advantages is scarce [4].
The theory ofmultipartite viruses has usually been carried

out in a game theoretical framework. With this approach,
one models the success of monopartite and multipartite
forms in terms of their ability to spread and persist in a host
population [3,11–14]. Such models typically conclude that
multipartitism occurs as a way to compensate for the cost of
high multiplicity of infection [3]. Specifically, it was shown
that having multipartitism might be a successful adaptive
strategy for viruses in new environments, especially in
homogeneous spatial structure [14].
In this Letter, we approach this puzzle from the point of

view of macroscopic ecological dynamics, thus seeking
an alternative way to understand the rise and persistence of
multipartitism. To this end, we propose a minimal model
in the framework of network epidemiology [15–17].
We assume that all the virions are epidemically equivalent
and that there is no competition dynamics among them that
would complicate the situation. Instead, we focus on the
effects of the contact structures of the hosts on the
propagation of multipartite viruses. We construct interac-
tion networks modeling different interaction patterns of real
plant and animal populations.
To model the propagation of multipartite viruses into a

networked epidemiological model, we first note that—unlike
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monopartite viruses whose genetic material is wrapped up in
a single virion that remains intact during the course of
spreading—multipartite viruses have segmented genomes
encapsidated in different virions that, in principle, propagate
independently [1]. Successful propagation demands that all
the different segments eventually reach the same host cell to
complete the viral life cycle [2,13,14]. In such a scenario, the
hosts can be divided into four compartments: susceptible (S,
hosts uninfected by any virion); latent (L, thosewho are hosts
of at least one, but not all, the different types of virions);
infectious (I, those who have acquired the full viral genome
and become infectious); removed (R, thosewho recovered or
died from the viral infection).
We try two different types of underlying interaction

structures—a static and an annealed network model
[16–24]. In the latter case, the network connections are
effectively reshuffled between any microscopic steps of the
epidemic dynamics (while keeping the number of neighbors
of each node fixed). The annealed structure mimics the
interaction patterns in animals where the underlying network
changesmuch faster than the propagation process of thevirus.
In contrast, a static topology is adopted for the interaction of
the skeleton of plants. Though most multipartite viruses are
transmitted by vector movements among plants [25], such a
simplification is reasonable since plants are spatially distrib-
uted on the surface of earth, and, macroscopically, the
interaction structure among plants changes at a much slower
time scale compared to that of animals.
Suppose a multipartite virus is composed of n separately

packaged nucleic acid segments. Let Lm denote the L-state
individuals carrying m (0 < m < n) segments of the
genome. I-state individuals can infect S and Lm (m < n)
individuals, and recover at a constant rate μ. Upon contact
with infected hosts, susceptible hosts may become either
latent or infected (dependent on howmany different types of
virions have been transmitted). Similarly, latent hosts
may acquire other viral segments by contacting with the
infected ones, thus increasing m. If n ¼ m, they become
infectious. Finally, infected hosts will pass to the recovered
state at some rate. We assume all types of virions have the
same infection rate βwhen an infectious individual interacts
with an individual in the S or L state. Then, the above
reactions of the SLIR model can be summarized as

Sþ I⟶
βn

Iþ I; ð1aÞ

Sþ I⟶
ðnmÞβmð1−βÞn−m Lm þ I; ð1bÞ

Lm1
þ I⟶

ð n−m1
m2−m1

Þβm2−m1 ð1−βÞn−m2

Lm2
þ I; ð1cÞ

Lm þ I⟶
βn−m

Iþ I; ð1dÞ

I!μ R; ð1eÞ

wherem1,m2 are integers and satisfy 0 < m1 < m2 < n. A
graphical illustration of the SLIRmodelwithn ¼ 3 is shown
in the Supplemental Material [26].
For simplicity, we do not account for higher-order plant-

virus-vector interactions [27]. Moreover, in our model, all
types of virions are epidemically equivalent, and each one
of them can propagate independently without the involve-
ment of any microscopic adaptive advantages, such as the
competition, cooperation, and commensality [14].
It has been shown that a majority of multipartite viruses

have two components, while those consisting of more than
four segments are rare [4]. For this reason, we primarily use
n ¼ 2. Details of the modeling can be found in the
Supplemental Material [26]. For the numerical simulation,
we use the standard Gillespie algorithm [28]. In our study,
unless otherwise stated, we let the networks have 105 to 106

nodes. Each data point presented below is an average over
103 to 104 runs of the simulation. In each realization, one
node is randomly selected to be the seed of the infection,
with all other nodes being susceptible.
We start our discussion with results from the annealed

networks. The degree-basedmean-field approach [15,16,29]
is applied to analyze the spreading dynamics.
We observe the rich phenomena of the spreading on

annealed networks. In particular, there exist two crucial β
values, βc1 and βc2, that divide the phase space into
different regimes, see Fig. 1(a). When β < βc1, the average
fraction of recovered nodes at the end of the epidemic
process, denoted by R∞, has only one stable fixed point 0,
indicating a disease free state. When βc1 < β < βc2, the
stable fixed point 0 remains and two new fixed points
R− (unstable), Rþ (stable) appear. When β > βc2, R∞ has
one unstable fixed point 0 and one stable fixed point Rþ. In
this case, the system has a sudden transition to a state where
it always evolves toRþ, indicating that global outbreaks are

FIG. 1. Average density of recovered nodes R∞ as a function of
β for the SLIR process taking place on (a) annealed ER networks
with a mean degree hki ¼ 6, and (b) static ER networks with
hki ¼ 10, 8, 6. In panel (a), lines are theoretical results, where the
stable solutions are represented by solid lines and unstable
solutions by dashed lines. The diamonds are the results from
stochastic simulations. In panel (b), the solid lines are numerical
solutions from pair approximation equations and the symbols are
simulation results.
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inevitable. Thus, βc2 can be regarded as the epidemic
threshold, and can be obtained by means of heterogeneous
mean-field theory as

βannealedc ¼ βc2 ¼
ffiffiffiffiffiffiffiffi

hki
hk2i

s

; ð2Þ

where hki is the average degree of the interaction network.
We perform extensive simulations on annealed Erdös-
Rényi (ER) networks to validate our theoretical results.
The numerical and theoretical thresholds agree well, see
Fig. 2 and the Supplemental Material [26]. For annealed
networks, we find theoretically that a discontinuous phase
transition only appears when hki > 1.91. Most real inter-
action networks probably fulfill this criterion.
It is worth mentioning that for monopartite (including

nonsegmented and segmented) viruses, the SLIR model
reduces to the SIR model [16]. Consider an SIR model with
infection rate β and recovery rate μ ¼ 1, the epidemic
threshold on annealed networks is βannealedSIR ¼ hki=hk2i [16].
Thus we have βannealedc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βannealedSIR

q

> βannealedSIR , since

βannealedSIR < 1. In terms of epidemic threshold, monopartite
viruses clearly have advantage over multipartite ones in
propagation which coincides with our intuition. The major
difference lies in the nature of the transition from epidemic-
free state to global outbreak state. The SIR model always
exhibits continuous transition whereas SLIR model shows
discontinuous transition when the network is relatively
dense. The discontinuous transition means that, just above
the threshold, the multipartite viruses can spread to a large
fraction of the population, making it difficult contain by
interventions.
Now we turn to static networks modeling the situation

when the interaction pattern of hosts changes slower than
the propagation of the virus. A mean-field method is then
no longer applicable since it neglects correlation between
the dynamical states of the hosts in static networks; i.e.,

a node is more likely to be infected if many of its neighbors
are infected [30]. Thus, we resort to the pair approxi-
mation approach [31–33], which explicitly accounts for the
dynamic correlations coming from infected pairs [30]
(correlations that are by definition lacking in annealed
networks [15]).
The outcomes of the propagation of multipartite viruses

on static ER networks are shown in Fig. 1(b). The solid
lines are numerical solutions of pair approximation equa-
tions, see details in the Supplemental Material [26]. The
symbols represent simulation results which agree well with
the analytical solutions. Figure 1(b) also displays that
sudden outbreaks appear when the mean degree of the
underlying interaction networks becomes sufficiently large,
e.g., hki ¼ 8 and 10. Yet, the transition in static networks is
not discontinuous as in annealed networks since no saddle
point bifurcation phenomenon occurs.
By solving the pair approximation equations, we are able

to find the epidemic outbreak threshold βstaticc on static
networks satisfies the following cubic equation

ð1 − hkiÞβ3 þ ð3hki − 1Þβ2 − 3β − 1 ¼ 0: ð3Þ
A simple form of βstaticc is not available, but numerical
solutions of Eq. (3) can be obtained easily. In Fig. 2, we
compare the epidemic thresholds, obtained through either
theoretical analysis or direct simulations, for the SLIR
model on static networks and the annealed counterparts
[34]. Interestingly and surprisingly, there is a crossover
between βstaticc and βannealedc as hki grows. Specifically, we
prove that the following relation always holds (see the
Supplemental Material [26])

βstaticc < βannealedc ; ð4Þ
when hki satisfies

hki > 5þ 3
ffiffiffi

5
p

2
≈ 5.84: ð5Þ

Intuitively, epidemic spreading on annealed networks
should happen easier than that on static networks because
the frequent switching of neighbors enables the infectious
nodes to contact more susceptible ones, which increases the
basic reproduction number [30]. By contrast, our results
here suggest that static topology favors the propagation of
multipartite viruses than the annealed topology whenever
local interactions are relatively dense (average interaction
degree is greater than 5.84).
From the above, we know that the presence of L-state

nodes induces both the discontinuous phase transition in
annealed networks and the lower epidemic thresholds in
dense static networks. On one hand, the frequently reshuf-
flingof the annealed networks raises the chance for infectious
hosts to come in contact with susceptible or latent hosts. On
the other hand, it also pushes the L-state nodes far away from
their infectious neighbors. Recall that L-state nodes are not
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FIG. 2. Epidemic (or colonization) thresholds of the SLIR
model on annealed and static ER networks with the increase of
mean degree hki. The lines are theoretical results predicted,
respectively, by Eqs. (2) and (3). The symbols represent the
results from stochastic simulations.
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infectious due to their lack of a full genome. Thus, before the
approach of a tipping point, L-state nodes are distributed
evenly in the system, very likely resulting in pervasive
outbreaks when the infection rate exceeds the critical value.
The mechanism behind this dynamic phenomenon is akin to
the explosive synchronization observed in multiplex net-
works [35], where microscopically suppressive rules give
rise to macroscopic discontinuous transitions.
By contrast, on static networks,L-state nodes are restricted

to stay at the surroundings of I-state nodes, which benefits
prominently the coinfectionof different virions, promoting in
turn the successful propagation of themultipartite virus. This
effect is especially pronounced on dense networks causing
the lower thresholds on static networks in comparison to on
annealed counterparts. More detailed analysis of the role of
L-state nodes in epidemic spreading can be found in the
Supplemental Material [26].
So far, we have mainly focused on bipartite viruses. It is

straightforward to extend our theoretical analysis to larger
numbers of viral segments. To illustrate this, Fig. 3 shows
results for the tripartite case, with the same conclusions as
the bipartite viruses.
In order to confirm that our findings are not bounded to

random networks, we also consider the SLIR model on
two-dimensional lattice networks (see graphical illustra-
tions in the Supplemental Material [26]). Such geo-
graphically embedded networks are better models of the
interaction structures between plants. To compare with
annealed networks we investigate constantly rewiring
regular random graphs (r-RRGs). Our simulations show
that large outbreaks not only happen on rewiring regular
random graphs but also on lattice networks provided the
mean degree of interaction is high enough. Lower epidemic
thresholds are once again verified in the simulations for
dense static interaction networks, serving as a promising
explanation for why multipartite viruses primarily infect
plants, see Fig. 4.

To clarify the critical behavior of the SLIR model on
static networks, we carried out extensive simulations to
measure the critical exponent α, characterizing the relation-
ship R∞ ∼ ðβ − βcÞα near the critical point. Basically, we
find that a large exponent α of the SLIR model on static ER
networks in comparison to the SIR model, suggesting that
multipartite viruses above the threshold spread more
pervasively compared to monopartite viruses [26].
In summary, we have constructed and analyzed a generic

minimal SLIR model for the propagation of multipartite
viruses on networked populations. We found discontinuous
phase transitions for the SLIR model on annealed networks,
whereas the transitions are continuous, but with a possibility
of global outbreaks, on static networks. This implies that
outbreaks of multipartite viruses can be very pervasive once
the epidemic threshold is reached. The type of transition of
the SLIR model is probably related to the turnover rate of
L-state nodes, but a precise characterization is out of the
scope of this Letter. The epidemic thresholds of the SLIR
model on annealed and static networks are obtained ana-
lytically by solving the heterogeneous mean field equations
and pair approximation equations, respectively. We showed
that the epidemic thresholds on static networks are smaller
than those on the annealed counterparts whenever the
average degree of interaction becomes sufficiently large.
The intuition is that locally dense and stable contacts makes

FIG. 3. Average density of recovered nodes R∞ as a function of
β for the SLIR process with n ¼ 3 on static and annealed ER
networks with a different mean degree hki. Filled and open
symbols correspond, respectively, to the results obtained through
stochastic simulations on static and annealed networks. Vertical
solid and dashed lines show the theoretical colonization thresh-
olds for static and annealed networks, respectively.

FIG. 4. Average density of recovered nodes R∞ as a function of
β for the SLIR process on two-dimensional square lattices and
their annealed counterparts (i.e., frequently rewiring regular
random graphs) with different mean degree hki. Panels (a) and
(b) are for multipartite viruses with two and three viral segments,
respectively. The filled and open symbols correspond, respec-
tively, to the results obtained through stochastic simulations on
static and annealed structures. The solid and dashed lines show
the colonization thresholds yielded by theoretical predictions for
static and annealed structures, respectively.
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the delivery of the entire genome likelier. When the network
changes faster, more hosts will be infected by some types of
virions, but fewer will obtain the whole viral genome.
In this Letter, we used a network epidemiological

framework to explain the viability of multipartite viruses,
despite their apparently costly lifestyle, and why they
primarily infect plants. We found that, although multipartite
viruses need to be more infectious than monopartite
viruses in order to spread out in general, the outbreak is
usually more pervasive once the threshold is reached.
Moreover, we show that multipartite viruses are mostly
favored to spread in plants whose contact structures
remain relatively static during the viral cycle. The counter-
intuitive behavior is believed to be particularly relevant
to the multiparticle genetic organization of the viruses
themselves.
Our current model has included as few virological

features as possible. For instance, we ignored the possibil-
ity of a difference in transmissibility of different types of
virions. Nonetheless, even in the absence of the explicit
microscopic advantage, multipartitism is verified to be
advantageous for the viruses to colonize (globally) struc-
tured populations. Our work thus provides a promising
avenue to elucidate the rise and persistence of multiparti-
tism from the macroscopic ecological dynamics viewpoint.
It is convenient to incorporate more realistic mechanisms,
in terms of empirical knowledge of the molecular, eco-
logical, and evolutionary features, into our minimal model
to better characterize the propagation of multipartite viruses
in the real world [4,36].
Finally, even though multipartite viruses mainly target

plants, the recent discovery of multipartite viruses on
mosquitoes and other insects hints at the possibility of
transmitting to animals as well as human beings, which
calls for elaborated extensions of our minimal model [5,6].
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