
PHYSICAL REVIEW E 104, 044315 (2021)

Systematic comparison of graph embedding methods in practical tasks

Yi-Jiao Zhang,1 Kai-Cheng Yang ,2 and Filippo Radicchi 2,*

1Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
2Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering,

Indiana University, Bloomington, Indiana 47408, USA

(Received 18 June 2021; accepted 14 September 2021; published 22 October 2021)

Network embedding techniques aim to represent structural properties of graphs in geometric space. Those
representations are considered useful in downstream tasks such as link prediction and clustering. However,
the number of graph embedding methods available on the market is large, and practitioners face the nontrivial
choice of selecting the proper approach for a given application. The present work attempts to close this gap of
knowledge through a systematic comparison of 11 different methods for graph embedding. We consider methods
for embedding networks in the hyperbolic and Euclidean metric spaces, as well as nonmetric community-based
embedding methods. We apply these methods to embed more than 100 real-world and synthetic networks.
Three common downstream tasks — mapping accuracy, greedy routing, and link prediction — are considered
to evaluate the quality of the various embedding methods. Our results show that some Euclidean embedding
methods excel in greedy routing. As for link prediction, community-based and hyperbolic embedding methods
yield an overall performance that is superior to that of Euclidean-space-based approaches. We compare the
running time for different methods and further analyze the impact of different network characteristics such as
degree distribution, modularity, and clustering coefficients on the quality of the embedding results. We release
our evaluation framework to provide a standardized benchmark for arbitrary embedding methods.

DOI: 10.1103/PhysRevE.104.044315

I. INTRODUCTION

Representing complex networks in latent space, or network
embedding, has generated a growing interest from multiple
disciplines [1–3]. From a theoretical point of view, the geo-
metric representation of a network may provide an intuitive
explanation of key properties of real-world systems such as
structural features [4], navigability [5,6], and robustness [7,8];
when it comes to applications, network embedding can be
useful for graph analysis tasks such as visualization [9], link
prediction [10], and graph clustering [11,12].

Many embedding methods use Euclidean space as their
target space. Euclidean embedding is intuitive and can im-
mediately be used in standard machine learning algorithms
[2,3]. However, network embedding methods are not limited
to Euclidean space. For example, many recent approaches
represent networks in hyperbolic space, where properties such
as hierarchy and heterogeneity can be easily captured [13–17].
Community structure can be seen as an alternative approach
to network embedding in nonmetric spaces [18].

The existence of so many available and diverse embedding
techniques presents a challenge for practitioners when they
have to choose the proper method for the application at hand.
Standardized tests for systematic comparison among methods
are lacking. The effectiveness of embedding methods is gen-
erally measured on limited types of tasks and small corpora of

*filiradi@indiana.edu

real-world networks. As a result, gauging the relative perfor-
mance of a method with respect to another is difficult.

In this work, we address this gap of knowledge by per-
forming a systematic comparison of representative embedding
methods. We consider five hyperbolic embedding methods
(HyperMap [13,19], Mercator [14], Poincaré maps [15], Hy-
dra [16], and HyperLink [17]), four Euclidean-space-based
approaches (Node2vec [20], Laplacian Eigenmaps (LE) [21],
HOPE [22], and Isomap [23]), and the two variants (relying on
Louvain [24] and Infomap [25]) of the nonmetric community
embedding method [18]. We apply these methods to em-
bed more than 100 real-world and synthetic networks. Three
downstream tasks, i.e., mapping accuracy, greedy routing, and
link prediction, are considered to evaluate the quality of the
various embedding methods. We assess how the performance
of the various methods is affected by network characteristics
such as degree distribution, modularity, and average clustering
coefficient. The various methods are also compared in terms
of their computational complexity and their number of tunable
parameters.

Our findings indicate that Euclidean embedding methods
such as Node2vec and Isomap represent the overall best
choice for practitioners as they yield decent performance in
all tasks. Hyperbolic embedding methods excel in link predic-
tion; however, their high computational complexity impedes
their application to large-scale networks. Community-based
methods behave similarly to hyperbolic embedding methods,
but they have a lower computational demand. Our systematic
analysis includes many different embedding methods. How-
ever for obvious reasons, we could not include all methods

2470-0045/2021/104(4)/044315(13) 044315-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4627-9273
https://orcid.org/0000-0002-8352-1287
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044315&domain=pdf&date_stamp=2021-10-22
https://doi.org/10.1103/PhysRevE.104.044315

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

FIG. 1. Geometric embedding of the Internet. We display the visualization of the autonomous system (AS) Internet network in Euclidean
space inferred by (a) Node2vec, (b) HOPE, (c) LE, and (d) Isomap, and in the Euclidean projection of the hyperbolic embedding as inferred
by (e) HyperMap, (f) Mercator, (g) HyperLink, (h) Poincaré maps, and (i) Hydra. The color of a point is representative of the continent where
the corresponding AS is located. For clarity of the visualization, only nodes with degree larger than one are shown. For the visualization of
Node2vec, HOPE, and LE, we first get the coordinates with dimension d = 128 and then use PCA to obtain a two-dimensional projection. For
the other methods, we directly plot their two-dimensional embeddings.

that are currently available on the market or that will be
developed in the future. For example, we did not consider
geometric embeddings of networks induced by dynamical
processes [26–29]; see Ref. [1] for more examples. To ease
the analysis of arbitrary embedding methods under our pro-
posed experimental setting, we made it publicly available; see
Ref. [30].

II. GRAPH VISUALIZATION

To qualitatively illustrate the differences between different
network embedding methods, we display graphical visualiza-
tions produced by the various methods for the same network
topology, i.e., the autonomous system (AS) Internet net-
work [31]. The network contains N = 23 748 nodes and E =
58 414 edges. Visualizations are displayed in Fig. 1.

It is important to stress that all visualizations are displayed
in the two-dimensional Euclidean space, and thus the origi-
nal embedding is projected in this space using some ad hoc
recipes. For example, to yield decent embedding results, a
high embedding dimension is required for Node2vec, LE,
and HOPE. We therefore first learn their 128-dimensional
embeddings and then use principal component analysis (PCA)
to project the results into the two-dimensional plane of the
figure. The visualization by Isomap is obtained directly by
setting the embedding dimension to two. For hyperbolic em-
bedding methods, we represent the embedded nodes with
their polar coordinates or Poincaré coordinates and plot them
in the two-dimensional Euclidean projection of the Poincaré
disks. Finally, despite their potential use in graph drawing, we
exclude the nonmetric community-based embedding methods
from the qualitative analysis in order to avoid the use of
sophisticated projections in the two-dimensional Euclidean
space.

To help the readers making sense of the visualizations, we
color the autonomous systems, i.e., the nodes of the network,

according to the continents where they are located. We can see
that although different embedding methods yield drastically
different visualizations, all of them can preserve geographic
proximity to some extent, i.e., nodes within the same continent
are often close to one another in the visualizations. If we
consider polar coordinates for all the embeddings (using the
geometric center as the origin for Euclidean embeddings), it
becomes clear that the angular coordinates encode the com-
munity structure of the graph [18,32]. The radial coordinates,
on the other hand, often convey network centrality informa-
tion [32].

To quantify such connection, we use over a dozen real-
world networks to empirically estimate the Spearman’s
correlation coefficients between the distance of a node from
the geometric center of different embeddings, denoted by rc,
and different network centrality measures. The results are
shown in Fig. 2. Clearly, the radial coordinates rc of Hy-
perMap, Mercator, and HyperLink represent the degree of
the nodes [13,14,17]. rc in the Isomap, Hydra, and Poincaré
maps embeddings is highly correlated with closeness central-
ity [32]. For embeddings obtained by LE and HOPE, rc is
highly correlated with closeness and eigenvector centrality.
However, we do not find an obvious connection between node
centrality and rc in Node2vec embedding.

III. PERFORMANCE IN DOWNSTREAM TASKS

We now use downstream tasks to quantify the embed-
ding quality of different methods. Specifically, we measure
their performance in mapping accuracy, greedy routing,
and link prediction. These tasks are conducted on 72 real-
world networks representing social, biological, technological,
transportation, and communication systems. Details of these
networks are included in Ref. [40], Sec. I.

To summarize the results from all the networks for an
embedding method on a task, we produce the complementary

044315-2

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

FIG. 2. Interpretation of the radial coordinates in embedding
space. We show the pairwise Spearman’s correlation coefficients
between the distance of a node from the geometric center of different
embeddings and different centrality metrics, such as closeness [33],
eigenvector [34], adaptive degree [35], betweenness [36], PageRank
[37], Katz [38], degree, and K-core [39] centralities. The values are
obtained by averaging the results from 13 real-world networks with
size N ∈ [1000, 5000] in our dataset.

cumulative distribution function (CCDF) of a performance
metric and calculate the area under the CCDF curve (CCDF-
AUC) as the overall score. The CCDF-AUC matches the
average value of the performance metric over the entire corpus
of real-world networks and higher CCDF-AUC values indi-
cate better overall performance.

Some embedding methods have free parameters that could
affect the measured value of the performance metric. We tune
the parameters for each method to find the optimal value of
the overall performance and use these parameter values for all
networks; see Sec. VI A for details.

A. Mapping accuracy

A general principle respected by all the embedding meth-
ods is that proximity in the embedding space is representative
for similarity or proximity in the original graph. Indeed, some
embedding methods work by directly finding the embedding
configuration that best preserves pairwise distance or other
similarity relationships. For example, Isomap, Poincaré maps,
and Hydra aim at preserving the shortest path distance among
all pairs of nodes in the embedding space; Node2vec and
HOPE try to encode certain similarity information. Other
methods follow the principle implicitly by fitting the observed
network against proximity-preserving network models (see
Sec. VI A for details).

A natural way to assess the quality of a method is to
measure how accurately the embedding method maps nodes
in the space so that pairwise graph proximity is preserved
in the embedding. We quantify the mapping accuracy of an
embedding method in terms of the Spearman’s correlation
coefficient ρ between the pairwise shortest path distance in
the network and the pairwise distance in the embedding space.

Note that it is infeasible to consider every possible pair of
nodes for large networks. We therefore use a maximum of 105

random pairs of nodes to approximate the Spearman’s ρ in the
case of the total number of node pairs N (N − 1)/2 > 105.

As mentioned above, we calculate the mapping accuracy
of different embedding methods on 72 real-world networks.
For the sake of clarity, in Fig. 3(a), we plot the CCDF for
some selected methods only. The CCDF-AUC values of all
embedding methods are listed in Table I. Overall, we find that
all methods do a good job in preserving graph proximity in
the embedding space.

Isomap and Hydra top the ranking on this task. This finding
is not surprising given that both methods aim to optimize
the congruence between the pairwise proximity of nodes in
the graph and in the embedding space. The mapping accu-
racy of Poincaré maps is not as high, even though it also
aims to preserve the shortest distance among pairs of nodes.
An advantage of Isomap and Hydra is that they can per-
form embedding in arbitrarily high-dimensional spaces, while
Poincaré maps can only work in two-dimensional hyperbolic
space. Our experiments show that the mapping accuracy of
Isomap and Hydra increases as the embedding dimension
increases. The results of Fig. 3(a) and Table I are obtained
with d = 128. By setting d = 2, Poincaré maps achieves the
best performance; the performance of Hydra is also better than
that of Isomap. The main reason is that the two-dimensional
Euclidean space may not be large enough to properly embed
large networks (see Ref. [40], Sec. II).

B. Greedy routing

Network embeddings may be used in greedy routing proto-
cols devised for efficient network navigation [5,75]. The task
regards the delivery of a packet from a source node s to a
target node t . The packet performs hops on the network edges,
moving from one node to one of its neighbors at each stage of
the navigation process. In particular, according to the greedy
protocol, at every stage of the process the packet moves to the
neighbor that is closest to target t according to a metric of dis-
tance. Such a metric of distance is computed using knowledge
about the embedding space and the nodes’ coordinates. If the
packet reaches the target node t , the delivery is considered
successful. However, if the packet visits the same node twice,
the delivery fails. A good embedding for this task should be
able to allow a high rate of successful deliveries along delivery
paths that are not much longer than the true shortest paths.

In this work, we follow the literature and use the greedy
routing (GR) score to measure the performance of different
embeddings in greedy routing [76]. The GR score is defined
as

GR score = 2

N (N − 1)

∑
i> j

Di j

Ri j
, (1)

where Di j is the shortest path length between nodes i and j
in the original network, and Ri j is the length of the actual
delivery path followed by the packet according to the greedy
routing protocol. All pairs of nodes are considered in the sum
of Eq. (1), including those leading to successful and unsuc-
cessful deliveries. For an unsuccessful delivery, Ri j is infinite
and Di j/Ri j = 0. For a successful delivery along one of the

044315-3

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

FIG. 3. Aggregate performance in downstream tasks. We show the complementary cumulative distribution function (CCDF) of (a) the
Spearman’s correlation coefficients of the mapping accuracy, (b) the GR scores of greedy routing, and (c) the ROC-AUC scores of link
prediction for different embedding methods on real-world networks. The average performance over all networks of an embedding on a task is
equal to the area under the curve of the corresponding CCDF. Since most of the embedding methods are stochastic, the data points in the figure
are obtained by averaging the results from five independent repetitions.

shortest paths connecting i to j, we have Di j/Ri j = 1. The
GR score is 0 when all the deliveries are unsuccessful. The
GR score equals 1 when all packets are successfully delivered
along the shortest path in the original network. Note that it
is impossible to test every pair of source-target nodes for
large networks. In our experiments, we randomly select 104

source-target pairs to approximate the GR score in the case of
the total number of node pairs N (N − 1)/2 > 104.

We show the CCDF of the GR scores for selected em-
bedding methods in Fig. 3(b) and the CCDF-AUC values
for all methods in Table I. We note that all methods can
facilitate network navigation to some extent. In general, there

is a nontrivial relationship between the performance in map-
ping accuracy and the one in greedy routing. It is already
known that Isomap performs well in this task [32]. The
relatively good performance of Node2vec is instead a new
result. In part, the result can be explained by considering
that embeddings obtained by Node2vec are based on the
exploration of graph paths, a process that well informs a
greedy navigation protocol. On the other hand, it seems that
Euclidean-space-based embeddings are better suited for this
task than embedding methods relying on hyperbolic geometry
and nonmetric spaces. A possible explanation of our finding is
that many of the non-Euclidean embedding methods focus on

TABLE I. Key features and results of different network embedding methods. From left to right, we report the name of the method, target
embedding space (space), programming language of the publicly available implementation (lang.), network structural information preserved
by the method (struct. preserv.), computational complexity (complexity), CCDF-AUC for mapping accuracy (mapp. acc.), CCDF-AUC for
greedy routing (greedy rout.), and CCDF-AUC for link prediction (link pred.). For each task, we highlight in bold face the CCDF-AUC values
of the top three embedding methods. In the expressions of computational complexity, N is the number of the nodes, E is the number of the
edges, d is the embedding dimension, C is the cost to compute each entry of the shortest path length matrix, e is the number of epochs (we set
e = 1000), b = min{512, N/10} is the batch size, m is the number of node layers, and 〈k〉 is the average degree of the network. More details
about the methods can be found in Sec. VI A. The CCDF-AUC values are generated by aggregating the performance on 72 real-world networks
for mapping accuracy and greedy routing. For link prediction, the CCDF-AUC values are computed on a subset of 46 real-world networks
with size larger than 300. The CCDF-AUC values for HyperLink are marked with * because the method is unable to embed several networks.
Restricting the analysis on the subset of real-world networks that HyperLink can process yields qualitatively similar results in all three tasks
(see Ref. [40], Sec. II).

Method Space Lang. Struct. preserv. Complexity Mapp. acc. Greedy rout. Link pred.

Node2vec [20] Euclidean PYTHON Tunable O(dN) 0.561 0.818 0.787
HOPE [22] Euclidean PYTHON Global O(d2E) 0.575 0.703 0.769
Laplacian Eigenmaps (LE) [21] Euclidean PYTHON Local O(d2E) 0.464 0.566 0.749
Isomap [23] Euclidean PYTHON Global O(CN2 + dN2) 0.858 0.861 0.848
HyperMap [19] hyperbolic C++ Local O(N2) 0.388 0.584 0.840
Mercator [14] hyperbolic PYTHON Local O(N2) 0.557 0.530 0.902
HyperLink [17] hyperbolic C++ Local O(m〈k〉N2) 0.516* 0.510* 0.897*
Poincaré maps [15] hyperbolic PYTHON Global O(N2 + ebN) 0.628 0.494 0.822
Hydra [16] hyperbolic R Global O(Nα), α > 2 0.799 0.683 0.846
Community embedding nonmetric PYTHON Local O(N ln N) 0.618 0.619 0.902
(Infomap) [18]
Community embedding nonmetric PYTHON Local O(N ln N) 0.561 0.454 0.914
(Louvain) [18]

044315-4

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

preserving local network properties rather than global ones.
The only exception to this rule is Hydra, which, in fact,
displays relatively higher performance than that of the other
hyperbolic embedding methods.

C. Link prediction

Link prediction is a standard task to evaluate the per-
formance of graph embedding methods [3,10]. The goal is
predicting the existence or the nonexistence of edges between
nonobserved pairs of nodes. There are potentially many differ-
ent ways to implement the task. In our case, we first remove
30% of randomly chosen edges from the original network
while ensuring that the remaining graph is still formed by a
single connected component. The removed edges are used as
the positive test set. Then, we randomly sample a negative
test set of nonexistent edges with size identical to that of the
positive test set. The remaining network is fed to the em-
bedding methods. For each pair of nodes, the closer they are
in the embedding space, the more likely they are connected.
We stress that the information about removed edges is not
provided to any embedding methods except for Hyperlink,
for which the percentage of the removed edges is an input
parameter.

The ability of an embedding to distinguish the edges from
the positive and negative sets is measured by the area under
the receiver-operating characteristic curve (ROC-AUC). The
ROC-AUC score ranges from 0.5 to 1. For perfect prediction,
the ROC-AUC score equals 1. The score is 0.5 for random
guesses. For small networks, removing 30% of the edges may
substantially distort the network structure and the link predic-
tion results. Therefore, we only consider real-world networks
with more than 300 nodes for the link prediction task in this
paper. We show the CCDF of ROC-AUC scores for selected
embedding methods in Fig. 3(c) and report the CCDF-AUC
values for all methods in Table I, as before. All embedding
methods yield comparable performance in this task. Merca-
tor and the community-based methods yield a slightly better
performance than the other methods. The result can be a
reflection of the fact that the embeddings are obtained by fit-
ting graphs against probability laws for network connections,
which immediately provide predictions for missing links. We
also measure the area under the precision-recall curve (AUPR)
for each method in the link prediction task, and the results
are qualitatively similar to those obtained for ROC-AUC (see
Ref. [40], Sec. II).

D. Embedding performance on synthetic networks

In order to systematically analyze the performance of the
different embedding methods, we also use 34 instances of
synthetic networks generated by five types of network models:
the popularity-similarity-optimization (PSO) model [4,19],
the Lancichinetti-Fortunato-Radicchi (LFR) model [77], the
configuration model with power-law degree distribution and
Poisson degree distribution (power-law networks and Poisson
networks), and the model for spatial networks by Daqing et al.
[78] (see Sec. VI B for details of the network models and
parameters used).

FIG. 4. Average performance in link prediction and greedy rout-
ing over a large corpus of real-world networks. Here we summarize
the same results as Table I. We plot the CCDF-AUC values of
ROC-AUC scores and GR scores for different embedding methods.
Circles, triangles, and squares represent Euclidean-, hyperbolic-, and
community-based embedding methods, respectively. The hollow and
solid symbols represent methods that preserve local and global net-
work structural information, respectively.

We apply the embedding methods to the synthetic net-
works, repeat the evaluation on three downstream tasks, and
report the performance in Table II. We can see that the results
on the synthetic network models are consistent with the re-
sults obtained on the real-world networks. Isomap and Hydra
are the top two methods for mapping accuracy. Euclidean
embeddings such as Node2vec and Isomap perform better
than hyperbolic and community-based embeddings on greedy
routing, while hyperbolic and community-based embeddings
outperform Euclidean-based embedding methods on link pre-
diction.

By tuning the parameters of the network models, we can
further study the effect of network characteristics on the
performance of different embedding methods. The network
models and the corresponding network characteristics ana-
lyzed in this paper are listed in Table III.

We find that certain network characteristics have strong
effects on downstream tasks as follows: (1) the ability of
embedding methods to preserve graph distance deteriorates as
the density of the network grows, (2) the ability of embedding
methods to inform the greedy routing protocol improves as
the network clustering coefficient increases but its modularity
decreases, (3) the ability of embedding methods in inferring
links between nonobserved pairs of nodes improves as the
network clustering coefficient increases, the network modu-
larity grows, and the heterogeneity of the degree distribution
increases. Detailed results can be found in Ref. [40], Sec. IV.
These effects are universal across different methods with a few
exceptions. For example, Isomap and Node2vec perform well
in greedy routing regardless of the network characteristics.

E. Summary of the results

To provide an overview of the performance of different
embedding methods, we focus on link prediction and greedy
routing, and summarize the results in Fig. 4. The same analy-
sis for synthetic networks can be found in Ref. [40], Sec. IV.
We can see that Isomap and Node2vec outperform the other
methods in greedy routing, while community embedding,
Mercator, and HyperLink yield a better performance in link
prediction. However, no single method outperforms all the
other methods in both tasks according to Fig. 4.

044315-5

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

TABLE II. Embedding performance on synthetic networks. We summarize all the results obtained by the different embedding methods on
the synthetic network models considered in this paper (i.e., PSO models, LFR networks, power-law networks, spatial networks, and Poisson
networks). From left to right, we report the name of the method, the CCDF-AUC of mapping accuracy on the various network models, the
CCDF-AUC of greedy routing scores on the same set of network models, and the CCDF-AUC of link prediction ROC-AUC scores on the same
set of network models. Link prediction results for Poisson networks are excluded since no meaningful prediction can be made for the edges
of random and homogeneous networks. See details about synthetic networks in Sec. VI B. We highlight in bold face the top three methods for
each network model and task combination. Some values for Mercator and HyperLink are marked with * because the methods are not able to
embed several networks. The results are qualitatively similar if we restrict the analysis on the subset of networks that all methods can process.

Mapping accuracy Greedy routing Link prediction

Method PSO LFR Power law Spatial Poisson PSO LFR Power law Spatial Poisson PSO LFR Power law Spatial
Node2vec 0.710 0.626 0.692 0.692 0.578 0.892 0.886 0.925 0.903 0.876 0.825 0.674 0.491 0.770
HOPE 0.740 0.444 0.662 0.547 0.442 0.742 0.740 0.873 0.775 0.768 0.750 0.678 0.523 0.697
LE 0.540 0.462 0.523 0.485 0.452 0.785 0.641 0.673 0.662 0.692 0.762 0.662 0.607 0.618
Isomap 0.943 0.789 0.853 0.863 0.652 0.872 0.846 0.887 0.885 0.794 0.818 0.729 0.647 0.733
HyperMap 0.379 0.314 0.365 0.283 0.266 0.797 0.265 0.528 0.371 0.294 0.848 0.695 0.653 0.660
Mercator 0.459* 0.384 0.375 0.450 0.339 0.607* 0.198 0.253 0.298 0.192 0.847* 0.698 0.623 0.687
Poincaré maps 0.618 0.379 0.412 0.489 0.315 0.577 0.256 0.228 0.418 0.218 0.808 0.672 0.590 0.680
HyperLink 0.303 0.375 0.370 0.345 0.317* 0.593 0.295 0.313 0.355 0.233* 0.742 0.719 0.642 0.662
Hydra 0.898 0.666 0.773 0.685 0.528 0.765 0.371 0.574 0.422 0.480 0.783 0.671 0.663 0.632
Comm. (Infomap) 0.586 0.434 0.402 0.437 0.329 0.743 0.318 0.473 0.442 0.360 0.883 0.735 0.633 0.738
Comm. (Louvain) 0.543 0.384 0.353 0.388 0.309 0.592 0.178 0.185 0.203 0.149 0.883 0.740 0.638 0.732

We remark that the two tasks are fundamentally different,
as link prediction is a local prediction task while greedy
routing is a global discovery task. Also, the position of an
embedding method in the performance diagram shown in
Fig. 4 seems partially predictable based on the type of space
targeted by the embedding method and/or the type of network
structural information that the method is able to preserve (see
Table I). As a general rule of thumb, methods that preserve
local information excel in link prediction, and algorithms
that preserve global structure achieve optimal performance in
greedy routing.

To further validate our rule of thumb, we take advantage of
Node2vec. The algorithm acquires structural information by
means of random walks with restart. The length of the random
walks serves as a proxy for the typical scale of structural
information that is preserved by the embedding. We apply
Node2vec with walk length l = 10 and l = 100 on the IPv6
Internet network [79] and use the resulting embeddings to per-
form greedy routing and link prediction. Instead of reporting
the overall performance, we group the node pairs involved
in the tasks by their shortest path distance in the network
and then calculate the scores within each group. We plot the
results in Fig. 5. For l = 10, the GR score decreases quickly

TABLE III. Synthetic network models considered in our analysis
together with the corresponding network characteristics varied in our
tests.

Network model Characteristic

PSO model [4,19] Clustering coefficient
LFR model [77] Modularity
Poisson network Average degree
Power-law network Power-law exponent
Spatial networks [78] Power-law exponent

as the distance between source and target nodes increases. The
performance for l = 100 in greedy routing is instead almost
unaffected by the source-to-target distance. Performance in
link prediction obtained for l = 10 is far better than the one
obtained for l = 100. We note that the vast majority of links
tested have distance D = 2, which corresponds to the maxi-
mum gap in performance between the embeddings obtained
for l = 10 and l = 100.

IV. COMPUTATIONAL COMPLEXITY
AND RUNNING TIME

Scalability is another important factor when choosing the
proper embedding method. We summarize the computational
complexity in Table I. Hyperbolic embedding methods have
O(N2) computational complexity at least, while Euclidean
and nonmetric methods often scale linearly with the system
size.

To directly compare the running time of the various
embedding techniques, we apply all the methods to a se-
ries of networks with different sizes generated by the
popularity-similarity-optimization (PSO) model [4,19]. All
the experiments are performed on a server equipped with Intel
Xeon Platinum 8268 CPUs (2.90GHz) and 1.5TB RAM. Al-
though the server has multiple processors, all the methods are
allowed to use one processor only. Figure 6 shows the relation
between the running time and the network size for all the
embedding methods. The results confirm that the Euclidean
and the nonmetric embedding methods tend to be much faster
than the hyperbolic embedding methods. When we apply the
embedding algorithms to different network models and mea-
sure their computational time, results are qualitatively similar.

Among the methods tested, only Node2vec and community
embedding methods (both variants with Louvain [24] and
Infomap [25]) can easily scale up to large networks. As a
demonstration, we apply them to two real-world networks

044315-6

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

FIG. 5. Greedy routing and link prediction results obtained by
Node2vec with different walk length on the IPv6 Internet network.
(a) The relation between the GR score and the shortest path length
between node pairs involved when using Node2vec with different
walk length (l = 10 and l = 100) to guide greedy routing. (b) Same
as (a), but for ROC-AUC scores in link prediction. (c) The distri-
bution of distance between node pairs involved in greedy routing.
(d) Same as (c), but for link prediction. The data points in the figure
are obtained by averaging the results of 10 experiments; the error
bars indicate one standard deviation from the mean.

with more than one million nodes. They complete the embed-
ding in about 24 hours and 1.4 hours, respectively, without
compromising the performance on downstream tasks (see
details in Table IV). In order to avoid unnecessary memory
and time usage while applying Node2vec on networks with
millions of nodes, we use a program optimized for unweighted
networks and specific algorithm parameter values (p = 1 and
q = 1).

In our experiments, we try to use the implementation
shared by the creators whenever possible. For classic methods

FIG. 6. Running time vs network size. We show the running
time of different embedding methods in relation to the size of PSO
models. The network size ranges from N = 26 to N = 215. Other
parameters of the PSO models are average degree 〈k〉 = 5, power-
law exponent γ = 2.1, and temperature T = 0.5. Each data point is
the average of five simulations. For HyperMap, we use the hybrid
algorithm without correction steps and enable the speedup mode
by setting kspeedup = 10 (see Sec. VI A for details). The black full
line indicates linear scaling; the black dashed line denotes quadratic
scaling.

such as LE and Isomap, we use the implementation provided
by the PYTHON package SCIKIT-LEARN [80]. We implement
Node2vec and community embedding in PYTHON with the
help of some open-source packages. Note that this is not
the ideal setup for comparing the running time of different
methods since the programming language (see Table I) used
can heavily affect the results and the implementation used
in our experiments can sometimes be further optimized. In-
stead, our experiments mimic a more practical scenario where
practitioners hope to quickly apply the embedding methods
without spending too much time improving or even imple-
menting the methods themselves. The results here provide a
rough estimation of the expected running time when using the
most accessible implementation.

V. DISCUSSION

In this work, we consider a large corpus of real-world and
synthetic networks, and measure the performance of several
embedding methods in solving specific network tasks. We find
that Isomap and Node2vec outperform the other methods in
greedy routing. As for link prediction, community embedding,
Mercator, and HyperLink all yield excellent performance. Our
results on synthetic network models indicate that the type and
feature of the target networks are not important when choos-
ing the embedding method. Instead, one possible principle is
that the methods aiming to preserve global network structure
excel in greedy routing, and methods only capturing local
information achieve optimal performance in link prediction.
Also, our analyses of the algorithm running time show that
hyperbolic methods are much slower than other methods,
suggesting that they are not yet well suited for embedding
large-scale networks.

We stress that not all factors that are important in the deci-
sion of choosing an embedding method are measurable and
quantifiable. Some methods may provide valuable insights
into the characteristics of networks although their perfor-
mance may not be comparable with that of others in certain
tasks. For practical tasks, many other features may also be
crucial. A method can be chosen because its implementation
is easy to access and configure, and the method can process
different input networks. For instance, we had to exclude some
embedding methods from our experiments because we were
unable to find adequate implementations. Also, some of the
methods considered in this paper require proper calibration
of input parameters to be successful in downstream tasks
[12]. For example, choosing a large value for the embedding
dimension for Node2vec, LE, and HOPE does not always lead
to good results. These methods can suffer from overfitting on
certain tasks when the embedding dimension is too high. Cal-
ibration is generally a computationally expensive operation
and there may be practical situations where calibration cannot
even be performed.

All things considered, we believe that the Euclidean em-
bedding methods such as Node2vec and Isomap should be
the first options for practitioners since they have stable
and widely available implementations, and they yield a de-
cent performance in all tasks. The non-Euclidean embedding
methods still present some challenges. Their non-Euclidean
nature makes it nontrivial to incorporate their results to com-

044315-7

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

TABLE IV. Node2vec and community embedding on large networks. We report the performance on mapping accuracy (Spearman’s ρ),
greedy routing (GR score), and link prediction (ROC-AUC score), as well as the running time (seconds) of Node2vec and community embed-
dings with Infomap and Louvain algorithms on the YouTube friend network (N = 1 134 890) and the AS Skitter network (N = 1 694 616).

Network Metric Node2vec Infomap Louvain

YouTube friend Mapping accuracy 0.620 0.499 0.352
Greedy routing 0.478 0.071 0.588
Link prediction 0.959 0.962 0.976
Running time 33 045 s 4 938 s 732 s

AS Skitter Mapping accuracy 0.582 0.403 0.033
Greedy routing 0.348 0.117 0.363
Link prediction 0.998 0.991 0.983
Running time 85 356 s 3 149 s 1 895 s

mon downstream tasks in general, which may limit their
applicability. Nevertheless, the fact that the non-Euclidean
methods stand out in certain tasks suggests that they have a
great potential, calling for further investigation and improve-
ment.

VI. METHODS

A. Network embedding methods

Network embedding methods are sets of procedures that
map the nodes of the input network into points in the tar-
get space. The coordinates of the nodes serve as the vector
representation of the networks and the pairwise distance of
different nodes corresponds to their proximity or similarity
in the input networks. Depending on the target spaces, the
representation of the embedded network and the definition of
the distance between nodes in the embedding space vary. Here
we group different embedding methods by their target spaces,
i.e., Euclidean, hyperbolic, and nonmetric spaces.

1. Euclidean embedding methods

For Euclidean embedding methods, each node i can be de-
scribed by a d-dimensional vector xi = (x(1)

i , . . . , x(d)
i), where

d is the space dimension and serves as a free parameter for
all Euclidean embedding methods. There are several ways
to calculate the distance between two nodes in Euclidean
embedding space. The most common two, Euclidean distance
and dot product, are used in this work. The Euclidean distance
between node i and j is defined as

disti j = ‖xi − x j‖ =
√√√√ d∑

v=1

(x(v)
i − x(v)

j)2 . (2)

The dot product between nodes i and j is given by

xi · x j =
d∑

v=1

x(v)
i x(v)

j . (3)

Note that the similarity between two vectors is proportional to
their dot product. So we use

disti j = −xi · x j, (4)

as the effective distance in the dot product approach.
Node2vec, LE, HOPE, and Isomap are the four Euclidean

embedding methods that we consider in this paper. We use

either the distance of Eq. (2) or Eq. (4), depending on the
objective function that a method minimizes and the actual
downstream task. Equation (2) is used for LE and Isomap in
this paper. For Node2vec and HOPE, we use Eq. (4) for link
prediction according to their objective functions, and Eq. (2)
for mapping accuracy and greedy routing because it yields
a much better performance than when distance is calculated
according to Eq. (4) (see Ref. [40], Sec. III).

Next, we briefly introduce each method and the parameters
used in our experiments.

(1) Node2vec [20]. Node2vec first generates multiple node
sequences using random walks with fixed length, then finds
the vector representations that maximize the probability of
co-occurrence of the nodes in the sequences. There are some
tunable parameters for Node2vec, such as walk length l , win-
dow size, the bias parameters of the random walk dynamics p
and q, and the embedding dimension d . In this work, we use
the following default setting: window size = 10, p = 1, and
q = 1.

We find that the walk length can greatly affect differ-
ent downstream tasks. The main reason is that walk length
directly controls the type of information that the resulting
embedding preserves. Short walk lengths preserve local struc-
tural information; long walk lengths preserve global structure.
As expected, according to our tests on several real-world net-
works, increasing the walk length improves the performance
of mapping accuracy and greedy routing, but worsens link
prediction (see Ref. [40], Sec. III). So we set l = 10 for link
prediction and l = 100 for the other two tasks in this paper.

In general, the larger the dimension d , the better the em-
bedding. But for Node2vec, the performance in downstream
tasks may decrease slightly as d increases (see Ref. [40],
Sec. III). In this work, we set d = min{N, 128} for all embed-
ding methods that can work with high- (d > 2) dimensional
embedding space, which is considered a sufficiently high
value to achieve nearly optimal embeddings of networks [81].
We make this choice to maintain the simplicity of the ex-
periments without introducing strong biases towards certain
methods.

(2) Laplacian Eigenmaps (LE) [21]. LE aims to place the
nodes that are connected with each other closely in the em-
bedding space by minimizing the objective function,

ELE =
∑

i j

‖xi − x j‖2Ai j = tr(XT LX), (5)

044315-8

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

where X = (x1, x2, . . . , xn)T is the low-dimensional represen-
tation matrix of the network, A is the adjacency matrix of the
network (Ai j = Aji = 1 if nodes i and j are connected, oth-
erwise Ai j = Aji = 0), L = K − A is the Laplacian matrix,
and K is the diagonal matrix with Kii = ∑

j A ji. LE further
requires XT KX = I to eliminate trivial solutions. To obtain a
d-dimensional embedding, one can simply extract the eigen-
vectors that correspond to the d smallest nonzero eigenvalues
of the solution to Lx = λKx.

LE only has one tunable parameter: dimension d . We set it
to d = min{N, 128}.

(3) HOPE [22]. Given a node similarity definition, HOPE
seeks to preserve the similarity matrix S in the embedding
space by minimizing

EHOPE = ‖S − xxT ‖, (6)

through singular value decomposition (SVD). HOPE can
work with different node similarity definitions; here we use
the Katz index, which is calculated by

SKatz = δ

∞∑
l=1

Al , (7)

where A is the adjacency matrix of the network and δ is the
decay parameter. HOPE requires δ < 1/λmax, with λmax the
principal eigenvalue of the matrix A. We set δ = 1/λmax −
0.001 for all experiments. The embedding dimension d is set
to d = min{N, 128}.

(4) Isomap [23]. Isomap tries to preserve the shortest path
distance between each pair of nodes. It first calculates the
shortest path distance matrix D of a network. Then multi-
dimensional scaling (MDS) [82] is applied to D to obtain a
d-dimensional representation of the network that minimizes
the stress function,

EISO =
∑

i j

[Di j − ‖xi − x j‖]2. (8)

We set the embedding dimension d = min{N, 128} for
Isomap in all experiments.

2. Hyperbolic embedding methods

For hyperbolic embedding, nodes are usually considered
as points on the Poincaré disk. Two coordinate systems are
often used in the literature, i.e., the polar coordinates (r, θ)
and the Poincaré coordinates y = (y(1), y(2)). The Poincaré
coordinates are similar to the Euclidean coordinates but rep-
resent points in hyperbolic space. They can also be extended
to arbitrary dimension, i.e., y = (y(1), . . . , y(d)), to represent
points in the Poincaré ball.

When using the polar coordinates, the distance between
node i and j can be calculated by

disti j = arcosh[coshricoshr j − sinhrisinhr jcos(�θ)], (9)

where �θ = π − |π − |θi − θ j || is the angle between the two
nodes.

When using the Poincaré coordinates, the distance between
nodes i and j can be calculated by

disti j = arcosh

(
1 + 2

‖yi − y j‖2

(1 − ‖yi‖2)(1 − ‖y j‖2)

)
. (10)

The two-dimensional Poincaré coordinates (y(1), y(2)) and
the polar coordinates (r, θ) of hyperbolic space can be con-
verted to each other by

r = 2artanh[
√

(y(1))2 + (y(2))2],

θ = atan2(y(2), y(1)).
(11)

Among the hyperbolic embedding methods considered in
this work, HyperMap, Mercator, and HyperLink use polar co-
ordinates; Poincaré maps and Hydra use Poincaré coordinates.
Poincaré maps focuses on the two-dimensional disk, while
Hydra can embed networks in higher-dimensional hyperbolic
spaces.

We briefly introduce each method and the parameters used
in our experiments in the following.

(1) HyperMap [13,19]. Popularity-similarity-optimization
(PSO) model [4,19] is a growing network model that can
simultaneously capture the heterogeneity degree distribution
and the strong clustering structure of real-world networks.
Nodes of PSO model are embedded in hyperbolic space and
their coordinates have clear interpretations: the radial co-
ordinate represents the node popularity, and the difference
between angular coordinates of a node pair represents the sim-
ilarity between them. The PSO model consists of a probability
law for the existence of edges between pairs of nodes in the
network depending on their distance in the hyperbolic space,
i.e., Eq. (9).

As an embedding method, HyperMap embeds an input net-
work to the hyperbolic space by fitting the network against the
PSO model. The fit is performed by maximizing the likelihood
of observed edges according to the PSO connection probabil-
ity law. As the maximum likelihood problem cannot be solved
exactly, different variants of the HyperMap algorithm ex-
ploit different strategies to find approximate solutions. These
variants include the link-based method [19], the common-
neighbors-based method (also called HyperMap-CN) [13],
and the hybrid method [13] that uses the common-neighbors-
based method for high degree nodes and the link-based
method for the rest of the nodes. The computational com-
plexity of the above-mentioned algorithms is at least O(N3).
There is also a speed-up version of the hybrid method, which
can reduce the computational complexity of the method down
to O(N2) without compromising the embedding quality too
much.

In this paper, we use the speed-up version of HyperMap.
This method has extra correction steps that can marginally
improve the results but have a very high computational com-
plexity so we disable them. It has a parameter kspeedup to
control the level of acceleration. We set kspeedup = 10 for net-
works with size N < 10 000 and kspeedup = 40 for networks
with size N > 10 000.

The input parameters of HyperMap include the temper-
ature T ∈ [0, 1), which reflects the average clustering level
of a network. A higher temperature means that the network
is less clustered. Identifying the ideal temperature value for
each network requires scanning the parameter space, which
is infeasible in our experiments. Instead, we test the overall
performance of HyperMap for different values of the tem-
perature parameter on several real-world networks and find
that temperatures that are not too large or too small generally

044315-9

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

yield decent performance (see Ref. [40], Sec. III). So we set
temperature T = 0.5 in all experiments. Another input param-
eter of HyperMap is the exponent γ � 2 of the power-law
degree distribution of the network. Note that not all real-world
networks display a power-law degree distribution. To apply
HyperMap to all the networks considered, we use the code
shared by Broido et al. [83] to estimate a suitable γ value for
every network. If the estimated γ value is smaller than 2.1, we
set γ = 2.1.

(2) Mercator [14]. Mercator learns the hyperbolic repre-
sentations of networks by matching them with the S1/H2

model [84,85]. The S1/H2 model is the static version of the
PSO model. While the PSO model can only generate networks
with pure power-law degree distribution, the S1/H2 model
can generate networks with arbitrary degree distributions. Be-
sides the input network itself, Mercator does not require any
input parameters.

(3) Poincaré maps [15]. Poincaré maps aims to pre-
serve the pairwise shortest path length just like Isomap.
There are several free parameters of Poincaré maps. For exam-
ple, the Gaussian kernel width σP is related to the calculation
of the global proximity of the original network, and the scaling
parameter γP is used to tune the scattering of the embedding.
We find that these parameters have little effect on the results.
In this paper, we use the default setting σP = 1 and γp = 2
in all experiments. The maximum number of epochs for the
embedding optimization is set to e = 1000.

(4) Hydra [16]. Like Poincaré maps and Isomap, Hydra
(Hyperbolic distance recovery and approximation) also seeks
to preserve the pairwise shortest path length. The difference
between Poincaré maps and Hydra is that Hydra can work
in hyperbolic spaces of arbitrary dimension, while Poincaré
maps is designed for the two-dimensional space only. The
dimension d is the only one free parameter of Hydra. We set
d = min{N, 128} in all experiments.

(5) HyperLink [17]. HyperLink is a model-based hyper-
bolic embedding method designed for link prediction. It tries
to fit the networks to the random hyperbolic graphs (RHGs)
model, which is equivalent to the S1/H2 model used in Mer-
cator. HyperLink assumes that a fraction η of links is missing
when embedding a network. In addition to η, other input
parameters of HyperLink include the exponent 2 < γ < 3
of the degree distribution, the temperature T , the number of
layers m, and the coefficient g that controls the size of the
mesh in the angular space. In our experiments, we use the
default settings m = 20 and g = 1. We aid the method by
setting η = 0.3 in link prediction, and η = 0 in other tasks.
The estimation of γ is the same as in HyperMap. We set
γ = 2.1 if the estimated γ < 2.1, and γ = 2.9 if the estimated
γ > 2.9, in order to satisfy the requirement. Like HyperMap,
the temperature T is a free parameter for HyperLink. We test
the overall performance of HyperLink for different T values
on some real-world networks, and find that T = 0.3 yields the
best performance overall (see Ref. [40], Sec. III). Therefore,
we set T = 0.3 in our experiments.

3. Nonmetric embedding method

Community embedding [18] is a nonmetric embedding
method inspired by the analogy between hyperbolic embed-

dings and network community structure. It embeds networks
using information about their community structures: node i is
represented by the coordinates (ki, σi) where ki is the node’s
degree and σi is the index of the community that the node
belongs to. There are many community detection algorithms
available on the market. Here, we use two popular ones: In-
fomap [25] and Louvain [24]. After the community partition
of a network is obtained, nodes in the same communities are
merged together to generate supernodes, which then form a
supernetwork. The edge weight between community a and b
in the supernetwork is defined as

wab = 1 − lnρab if ρab > 0, (12)

and wab = 0 otherwise. ρab is the ratio between the total
number of edges between communities a and b and the sum
of the node degrees in community a.

The fitness between nodes j and i is defined as

fi j = βDσiσ j − (1 − β)ln ki, (13)

where Dσiσ j is the shortest path length between communities
σi and σ j in the supernetwork, ki is the degree of node i,
and 0 � β � 1 is a free parameter. In order to maximize the
overall performance of community embedding on different
tasks, we test the effect of β for the tasks on some real-world
networks, and set β = 0.3 for all experiments (see Ref. [40],
Sec. III). Note that the fitness of Eq. (13) is an asymmetric
function, i.e., fi j �= f ji. In this paper, we symmetrize it as

f̄i j = fi j + f ji

2
, (14)

and we treat it on the same footing as of a distance between
nodes i and j, i.e.,

disti j = f̄i j, (15)

even though f̄i j is not a proper metric of distance.

B. Networks

In this paper, we use both real-world networks and syn-
thetic networks. All networks are unweighted and undirected.
We consider 72 real-world networks from different domains,
including social, biological, technological, transportation, and
Internet networks. The sizes of these networks range from
32 to 37 542 nodes. Figure 7 shows the average degree ver-
sus network size for all 72 real-world networks used. Two
networks with more than one million nodes are also consid-
ered for Node2vec and community embedding particularly to
demonstrate their scalability. The full list of the real-world
networks and some of their basic information can be found
in Ref. [40], Sec. I. Only the largest connected component of
the various networks is considered in our analysis.

We use 34 synthetic networks generated according to dif-
ferent models. We ensure that each network instance consists
of one connected component only. The network models con-
sidered here are reported below.

(1) Popularity-similarity-optimization (PSO) model [4,19].
The PSO model grows networks by adding nodes to a hidden
hyperbolic space. Nodes close to each other in the hidden
space are then connected to form the edges. There are several
parameters that could affect the properties of the generated

044315-10

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

FIG. 7. Summary statistics of the real-world networks consid-
ered in this study. In the main panel, we show the scatter plot of
the average degree 〈k〉 vs network size N . Each point is a real net-
work in our dataset. Side panels are used to display non-normalized
distributions of 〈k〉 and N .

networks: network size N , temperature T , average degree 〈k〉,
and exponent γ of the power-law degree distribution P(k) ∼
k−γ . Temperature T ∈ [0, 1) controls the average clustering in
the network, which is maximized at T = 0. We generate six
instances of the PSO model with the following parameters:
N = {1000; 10, 000}, T = {0.1; 0.5; 0.9}, γ = 2.1, 〈k〉 = 5.

(2) Lancichinetti-Fortunato-Radicchi (LFR) model [77].
The LFR model generates networks with community struc-
ture, and both the degree distribution P(k) and community
size distribution P(S) follow a power-law distribution, i.e.,
P(k) ∼ k−γ and P(S) ∼ S−τ . Input parameters that are re-
quired to generate instances of the model are the network size
N , the exponents γ and τ , the average degree 〈k〉, the max-

imum degree kmax, the minimum and maximum community
size cmin and cmax, and the mixing parameter μ that determines
how strong the community structure is. A small value of μ

corresponds to a strong community structure. We generate
eight instances of LFR models, where the parameters are
N = {1000; 10, 000}, μ = {0.1; 0.3; 0.5; 0.7}, γ = 2.1, τ =
2, 〈k〉 = 5, kmax = 50, cmin = 10, cmax = 0.1N .

(3) Poisson networks. They are generated by feeding Pois-
son degree distributions to the configuration model. Two
tunable parameters are the size of network N and aver-
age degree 〈k〉. We use eight instances of Poisson networks
with the following parameters: N = {1000; 10, 000}, 〈k〉 =
{4; 6; 8; 10}.

(4) Power-law networks. They are generated by feeding
power-law degree distributions to the configuration model.
The tunable parameters are the network size N and the power-
law exponent γ . The average degree of a network can be
controlled by setting the minimum value of the node degrees,
namely, kmin. We use six instances of power-law networks and
the parameters are N = {1000; 10, 000}, γ = {2.1; 2.5; 2.9},
kmax = 100. We use either kmin = 2 or kmin = 3 for nodes in
the network to ensure an average degree 〈k〉 	 5.

(5) Spatial networks [78]. The model generates spatial
networks that are embedded in a two-dimensional regular
lattice. Both the degree distribution P(k) and the Euclidean
distance distribution of edges P(r) follow power-law distribu-
tions, i.e., P(k) ∼ k−γ and P(r) ∼ r−α . The input parameters
of the model are the network size N , the exponents γ and α,
and the minimum and maximum degrees kmin and kmax. We
use six instances of the model, with parameters chosen as
N = {1000; 10, 000}, γ = {2.1; 2.5; 2.9}, α = 2, kmax = 100.
We use either kmin = 2 or kmin = 3 for nodes in the network to
ensure an average degree 〈k〉 	 5.

ACKNOWLEDGMENTS

Y.-J.Z. acknowledges support from the China Scholar-
ship Council (Grant No. 201906180029). Y.-J.Z. and F.R.
acknowledge partial support from the National Science
Foundation (Grant No. CMMI-1552487). F.R. acknowledges
partial support from the U.S. Army Research Office (Grant
No. W911NF-21-1-0194).

[1] M. Boguñá, I. Bonamassa, M. De Domenico, S. Havlin, D.
Krioukov, and M. Á. Serrano, Nat. Rev. Phys 3, 114 (2021).

[2] W. L. Hamilton, R. Ying, and J. Leskovec, arXiv:1709.05584.
[3] P. Goyal and E. Ferrara, Knowl.-Based Syst. 151, 78 (2018).
[4] F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguná, and D.

Krioukov, Nature (London) 489, 537 (2012).
[5] M. Boguñá, D. Krioukov, and K. C. Claffy, Nat. Phys. 5, 74

(2009).
[6] A. Gulyás, J. J. Bíró, A. Kőrösi, G. Rétvári, and D. Krioukov,

Nat. Commun. 6, 7651 (2015).
[7] K.-K. Kleineberg, L. Buzna, F. Papadopoulos, M. Boguñá, and

M. A. Serrano, Phys. Rev. Lett. 118, 218301 (2017).
[8] S. Osat, F. Radicchi, and F. Papadopoulos, Phys. Rev. Research

2, 023176 (2020).

[9] L. Van der Maaten and G. Hinton, J. Mach. Learn. Res. 9, 2579
(2008).

[10] D. Liben-Nowell and J. Kleinberg, J. Am. Soc. Inf. Sci. Tech.
58, 1019 (2007).

[11] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon,
in Proceedings 2001 IEEE International Conference on Data
Mining, edited by N. Cercone, T. Y. Lin, and X. Wu (IEEE
Computer Society, San Jose, CA, 2001), pp. 107–114.

[12] A. Tandon, A. Albeshri, V. Thayananthan, W. Alhalabi, F.
Radicchi, and S. Fortunato, Phys. Rev. E 103, 022316 (2021).

[13] F. Papadopoulos, R. Aldecoa, and D. Krioukov, Phys. Rev. E
92, 022807 (2015).

[14] G. García-Pérez, A. Allard, M. Á. Serrano, and M. Boguñá,
New J. Phys. 21, 123033 (2019).

044315-11

https://doi.org/10.1038/s42254-020-00264-4
http://arxiv.org/abs/arXiv:1709.05584
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1038/nature11459
https://doi.org/10.1038/nphys1130
https://doi.org/10.1038/ncomms8651
https://doi.org/10.1103/PhysRevLett.118.218301
https://doi.org/10.1103/PhysRevResearch.2.023176
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1002/asi.20591
https://doi.org/10.1103/PhysRevE.103.022316
https://doi.org/10.1103/PhysRevE.92.022807
https://doi.org/10.1088/1367-2630/ab57d2

ZHANG, YANG, AND RADICCHI PHYSICAL REVIEW E 104, 044315 (2021)

[15] A. Klimovskaia, D. Lopez-Paz, L. Bottou, and M. Nickel, Nat.
Commun. 11, 2966 (2020).

[16] M. Keller-Ressel and S. Nargang, J. Complex Netw. 8, cnaa002
(2020).

[17] M. Kitsak, I. Voitalov, and D. Krioukov, Phys. Rev. Research 2,
043113 (2020).

[18] A. Faqeeh, S. Osat, and F. Radicchi, Phys. Rev. Lett. 121,
098301 (2018).

[19] F. Papadopoulos, C. Psomas, and D. Krioukov, IEEE/ACM
Trans. Netw. 23, 198 (2015).

[20] A. Grover and J. Leskovec, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, edited by B. Krishnapuram, M.
Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi
(ACM, New York, 2016), pp. 855–864.

[21] M. Belkin and P. Niyogi, in Proceedings of the 14th Interna-
tional Conference on Neural Information Processing Systems:
Natural and Synthetic, NIPS’01, edited by T. G. Dietterich,
S. Becker, and Z. Ghahramani (MIT Press, Cambridge, MA,
2001), pp. 585–591.

[22] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, in Proceed-
ings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, edited by B.
Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen,
and R. Rastogi (ACM, New York, 2016), pp. 1105–1114.

[23] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, Science 290,
2319 (2000).

[24] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
J. Stat. Mech.: Theory Expt. (2008) P10008.

[25] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. USA
105, 1118 (2008).

[26] E. Estrada, Phys. Rev. E 85, 066122 (2012).
[27] E. Estrada, M. Sánchez-Lirola, and J. A. de la Peña, Discret.

Appl. Math. 176, 53 (2014).
[28] D. Brockmann and D. Helbing, Science 342, 1337 (2013).
[29] C. Hens, U. Harush, S. Haber, R. Cohen, and B. Barzel, Nat.

Phys. 15, 403 (2019).
[30] See, https://github.com/yijiaozhang/hypercompare.
[31] M. Boguñá, F. Papadopoulos, and D. Krioukov, Nat. Commun.

1, 62 (2010).
[32] Y.-J. Zhang, K.-C. Yang, and F. Radicchi, Phys. Rev. E 103,

012305 (2021).
[33] G. Sabidussi, Psychometrika 31, 581 (1966).
[34] P. Bonacich, J. Math. Sociol. 2, 113 (1972).
[35] W. Chen, Y. Wang, and S. Yang, in Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’09, edited by J. F. Elder IV,
F. Fogelman-Soulié, P. A. Flach, and M. J. Zaki (ACM, New
York, 2009), pp. 199–208.

[36] L. C. Freeman, Sociometry 40, 35 (1977).
[37] S. Brin and L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998).
[38] L. Katz, Psychometrika 18, 39 (1953).
[39] M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.

Stanley, and H. Makse, Nat. Phys. 6, 888 (2010).
[40] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.044315 for a full list of the real-world
networks we considered in this paper, the detailed results of all
the embedding methods on the downstream tasks, and a full
explanation of the parameters selection for different embedding
methods. The Supplemental Material includes Refs. [41–74].

[41] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I.
Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538 (2004).

[42] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).
[43] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,

and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
[44] D. E. Knuth, The Stanford GraphBase: A Platform for Combi-

natorial Computing, Vol. 1 (ACM, New York, 1993).
[45] S. Mangan and U. Alon, Proc. Natl. Acad. Sci. USA 100, 11980

(2003).
[46] L. A. Adamic and N. Glance, in Proceedings of the 3rd Inter-

national Workshop on Link Discovery, LinkKDD ’05, edited by
J. Adibi, M. Grobelnik, D. Mladenic, and P. Pantel (ACM, New
York, 2005), pp. 36–43.

[47] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[48] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA

99, 7821 (2002).
[49] J. Fournet and A. Barrat, PLOS ONE 9, e107878 (2014).
[50] J. Kunegis, in Proceedings of the 22nd International Conference

on World Wide Web, WWW ’13 Companion, edited by L. Carr,
A. H. F. Laender, B. Farias Lóscio, I. King, M. Fontoura, D.
Vrandecic, L. Aroyo, J. P. M. de Oliveira, F. Lima, and E. Wilde
(ACM, New York, 2013), pp. 1343–1350.

[51] R. Michalski, S. Palus, and P. Kazienko, in Business Infor-
mation Systems, edited by W. Abramowicz (Springer, Berlin,
2011), pp. 197–206.

[52] N. D. Martinez, Ecol. Monogr. 61, 367 (1991).
[53] P. M. Gleiser and L. Danon, Adv. Complex Syst. 06, 565

(2003).
[54] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[55] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W.

Van den Broeck, J. Theor. Biol. 271, 166 (2011).
[56] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat. Phys. 3,

276 (2007).
[57] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[58] L. Šubelj and M. Bajec, Eur. Phys. J. B 81, 353 (2011).
[59] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A.

Arenas, Phys. Rev. E 68, 065103 (2003).
[60] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, Nature

(London) 411, 41 (2001).
[61] T. Opsahl and P. Panzarasa, Soc. Netw. 31, 155 (2009).
[62] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,

L. Ling, N. Zhang, G. Li, and R. Chen, Nucleic Acids Res. 31,
2443 (2003).

[63] T. Opsahl, F. Agneessens, and J. Skvoretz, Soc. Netw. 32, 245
(2010).

[64] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral, Proc.
Natl. Acad. Sci. USA 102, 7794 (2005).

[65] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans.
Knowl. Discov. Data 1, 2-es (2007).

[66] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[67] L. Šubelj and M. Bajec, in Proceedings of the First International

Workshop on Software Mining, SoftwareMining ’12, edited by
M. Li, H. Zhang, and D. Lo (ACM, New York, 2012), pp. 9–16.

[68] M. Ripeanu and I. T. Foster, in Peer-to-Peer Systems, edited by
P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron (Springer,
Berlin, 2002), pp. 85–93.

[69] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, in Proceedings
of the Eleventh ACM SIGKDD International Conference on

044315-12

https://doi.org/10.1038/s41467-020-16822-4
https://doi.org/10.1093/comnet/cnaa002
https://doi.org/10.1103/PhysRevResearch.2.043113
https://doi.org/10.1103/PhysRevLett.121.098301
https://doi.org/10.1109/TNET.2013.2294052
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1103/PhysRevE.85.066122
https://doi.org/10.1016/j.dam.2013.05.032
https://doi.org/10.1126/science.1245200
https://doi.org/10.1038/s41567-018-0409-0
https://github.com/yijiaozhang/hypercompare
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1103/PhysRevE.103.012305
https://doi.org/10.1007/BF02289527
https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.2307/3033543
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1007/BF02289026
https://doi.org/10.1038/nphys1746
http://link.aps.org/supplemental/10.1103/PhysRevE.104.044315
https://doi.org/10.1126/science.1089167
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1073/pnas.2133841100
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1371/journal.pone.0107878
https://doi.org/10.2307/2937047
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.jtbi.2010.11.033
https://doi.org/10.1038/nphys560
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1140/epjb/e2011-10979-2
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1038/35075138
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1093/nar/gkg340
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1073/pnas.0407994102
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1073/pnas.98.2.404

SYSTEMATIC COMPARISON OF GRAPH EMBEDDING … PHYSICAL REVIEW E 104, 044315 (2021)

Knowledge Discovery in Data Mining, edited by R. Grossman,
R. J. Bayardo, and K. P. Bennett (ACM, New York, 2005), pp.
177–187.

[70] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas,
Phys. Rev. E 70, 056122 (2004).

[71] M. Ley, in String Processing and Information Retrieval, edited
by A. H. F. Laender and A. L. Oliveira (Springer, Berlin, 2002),
pp. 1–10.

[72] L. Šubelj and M. Bajec, in Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13 Companion, edited
by L. Carr, A. H. F. Laender, B. F. Lóscio, I. King, M. Fontoura,
D. Vrandecic, L. Aroyo, J. P. M. de Oliveira, F. Lima, and
E. Wilde (Association for Computing Machinery, New York,
2013), pp. 527–530.

[73] M. De Choudhury, H. Sundaram, A. John, and D. D. Seligmann,
in Proceedings of the 2009 International Conference on Compu-
tational Science and Engineering, CSE ’09, Vol. 4, edited by A.
Pentland and J. Zhan (IEEE Computer Society, San Jose, CA,
2009), pp. 151–158.

[74] J. Yang and J. Leskovec, Knowl. Inf. Syst. 42, 181 (2015).
[75] J. M. Kleinberg, Nature (London) 406, 845 (2000).

[76] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V.
Cannistraci, Nat. Commun. 8, 1615 (2017).

[77] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[78] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Nat. Phys. 7,
481 (2011).

[79] K.-K. Kleineberg, M. Boguná, M. Á. Serrano, and F.
Papadopoulos, Nat. Phys. 12, 1076 (2016).

[80] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg et al., J. Mach. Learn. Res. 12, 2825 (2011).

[81] W. Gu, A. Tandon, Y.-Y. Ahn, and F. Radicchi, Nat. Commun.
12, 3772 (2021).

[82] I. Borg and P. Groenen, Modern Multidimensional Scaling:
Theory and Applications, Springer Series in Statistics (Springer,
New York, 2005).

[83] A. D. Broido and A. Clauset, Nat. Commun. 10, 1017 (2019).
[84] M. A. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev. Lett.

100, 078701 (2008).
[85] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M.

Boguñá, Phys. Rev. E 82, 036106 (2010).

044315-13

https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1038/35022643
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1038/nphys1932
https://doi.org/10.1038/nphys3812
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.1038/s41467-021-23795-5
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1103/PhysRevLett.100.078701
https://doi.org/10.1103/PhysRevE.82.036106

