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The fundamental idea of embedding a network in a metric space is rooted in the principle of proximity
preservation. Nodes are mapped into points of the space with pairwise distance that reflects their proximity
in the network. Popular methods employed in network embedding either rely on implicit approximations of
the principle of proximity preservation or implement it by enforcing the geometry of the embedding space, thus
hindering geometric properties that networks may spontaneously exhibit. Here we take advantage of a model-free
embedding method explicitly devised for preserving pairwise proximity and characterize the geometry emerging
from the mapping of several networks, both real and synthetic. We show that the learned embedding has
simple and intuitive interpretations: the distance of a node from the geometric center is representative for its
closeness centrality, and the relative positions of nodes reflect the community structure of the network. Proximity
can be preserved in relatively low-dimensional embedding spaces, and the hidden geometry displays optimal
performance in guiding greedy navigation regardless of the specific network topology. We finally show that
the mapping provides a natural description of contagion processes on networks, with complex spatiotemporal
patterns represented by waves propagating from the geometric center to the periphery. The findings deepen our
understanding of the model-free hidden geometry of complex networks.
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I. INTRODUCTION

A wealth of recent papers from the physics commu-
nity have demonstrated that representing complex networks
in metric space may be beneficial in several respects [1].
Geometric representations provide intuitive explanations for
several properties of real-world networks, including structural
features [2–4], navigability [5,6], robustness [7,8], community
organization [9,10], and functional modularity [11,12]. Also,
the computer science community displays a growing interest
in embedding networks in vector space [13–15]. Resulting
representations allow for direct applications of standard ma-
chine learning algorithms in traditional graph analysis tasks,
such as link prediction [16], node classification [17], commu-
nity detection [18], and graph visualization [19].

The two strains of work share the same basic rationale:
nodes in the space should have pairwise distance that reflects
their similarity or proximity in the graph. However, proximity
preservation is implemented in different ways depending on
the scientific community of reference.

The approach adopted by the physics community often
involves explicit network models. Such an approach has the
advantage of providing an immediate interpretation of the
embedding. One of the most influential models, the so-called
popularity-similarity-optimization model (PSOM) [2,20], is
a very good example of this statement. PSOM assumes that
nodes are represented by points in the hyperbolic disk, and
that their radial and angular coordinates are representative
respectively of individual popularity and pairwise similarity.

The model further assumes connection probability between
pairs of nodes to be an explicit function of their distance in
the hyperbolic space. The embedding of a given network in
the hyperbolic disk is then found by fitting the network against
PSOM, with the hyperbolic coordinates of the nodes playing
the role of the fitting parameters. Model-based approaches to
network embedding are intuitive. However, they are useful
only as long as the assumed generative model is sufficiently
accurate in describing the structure of the fitted network [1].

By contrast, typical methods for network embedding de-
veloped by the computer science community do not assume
explicit generative models [14,15]. Such a model-free ap-
proach generally relies on defining a metric of pairwise node
similarity and then seeking the vectorized representation that
best preserves the overall similarity of an observed graph
[21,22]. The approach is flexible enough to provide a non-
trivial geometric representation of any network. However,
the interpretation of the inferred geometry may not be im-
mediate. Take, for example, classical methods based on the
spectral decomposition of graph operators, such as Laplacian
Eigenmaps [23]. Only some of the principal components of
the space, where the graph is projected to, have an intu-
itive physical meaning. Further the distance between points
in the embedding space mostly reflects the similarity of the
nodes in terms of common connections to other nodes but
is not necessarily related to their physical distance in the
graph space. The meaning of the geometric representation of
a network becomes even more opaque for sophisticated graph
embedding methods aiming at preserving ad hoc similarity
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metrics through quite involved optimization techniques, such
as Deepwalk [17], node2vec [16], and HOPE [24]. The lack
of a simple geometric interpretability of network embeddings
doesn’t hinder their usefulness in machine learning tasks.
However, it may seriously impede human understanding in
applications of graph embeddings on critical issues such as
identifying high-risk patients [25] and repurposing drugs for
the treatment of novel diseases [26,27].

Is it possible to find clear interpretations of the hidden
geometry that are learned by model-free embedding ap-
proaches? In this paper, we tackle directly this question. We
consider geometric representations where the shortest path
length among all pairs of nodes in the original network is
preserved as much as possible in the embedding space. To
avoid introducing prior knowledge on the hidden geometry
of the network, we use Euclidean space for the embedding.
Other than the objective to find the network representation that
best preserves pairwise shortest path lengths, the model-free
technique imposes no further restrictions. We stress that the
embedding method considered here already has been em-
ployed in Ref. [30] to assist graph drawing, in Refs. [31–33]
for the prediction of missing protein-protein interactions in
biological networks, and in Ref. [34] to aid the embedding
of networks in the hyperbolic space. Here we reuse the tech-
nique because it represents the most natural choice if the
goal is providing embeddings that are congruent with the
network structure with no underlying models and minimum
restrictions. The emerging geometries are network dependent
and not necessarily similar to previously suggested ones [35].
Learned geometries have simple and intuitive meanings. For
example, the distance of a node from the geometric center is
representative of its closeness centrality [36], while the rela-
tive positions of nodes reflect network community structure
[37]. We find that graph distance can be very well preserved
in relatively low-dimensional embedding spaces. Our analysis
further shows that the model-free embedding can assist net-
work routing [5,6,38] with high performance across a wide
spectrum of real and synthetic networks, including the ones
that the model-based approach fails on. The structure of the
model-free embedding also suggests a geometrical represen-
tation of spreading processes, which corresponds to waves
propagating from the center to the periphery of the embedding
space.

II. RESULTS

A. Inferring the model-free embedding map

The approach to network embedding that we consider here
is a direct implementation of the principle of proximity preser-
vation: graph distance, i.e., the length of the shortest path
connecting two nodes in the network, should to be preserved
in terms of metric distance, i.e., the length of the shortest path
connecting the projections of the two nodes in the embedding
space. To this end, we take advantage of MultiDimensional
Scaling (MDS; see Appendix A for details), a dimensionality
reduction method specifically devised to translate information
about the pairwise distances among a set of N objects into a
configuration of N points mapped into an abstract Euclidean
space [39,40]. For networks with more than 7000 nodes,
we deploy the landmark MDS [41,42] to approximate the

model-free embedding (see Appendix A for details). As many
other machine learning techniques, MDS also has a relatively
long history and is now experiencing renovated interest in the
emerging field of data science [43]. MDS has been considered
in a broad set of disciplines, such as psychology, sociology,
economics, biology, chemistry, and archaeology [40].

As we mentioned above, some applications of MDS to
network data exist [30–34,44]. Also, we remark that the em-
bedding method is quite often referred to as ISOmap rather
than MDS, e.g., in Refs. [15,32–34]. ISOmap is a method
for dimensionality reduction of data points in arbitrary space
that relies on MDS [45]. It consists of three steps: (1) gener-
ation of a network representation of the data, (2) computation
of the shortest path length matrix of the obtained network
representation, and (3) application of MDS embedding. In
our case, the network is already at our disposal, so no data
preprocessing is needed. We prefer to think that what we use
is the MDS method with input consisting of the shortest path
length matrix of a network. Therefore, we will refer to the
embedding method used in this paper as MDS.

B. Illustration and interpretation of the model-free
embedding map

To illustrate the model-free hidden geometry of networks
learned by MDS in an intuitive setting, in Fig. 1 we dis-
play two-dimensional maps for two real-world networks: the
European Road (ER) [28] and European Air Transportation
(EAT) [29] networks. Nodes in both networks represent main
European cities, with the caveat of large cities potentially
represented by multiple airports in the EAT network (see
details in Appendix B 2). In general, nodes belonging to the
same European country are mapped close to each other in
both maps, so that there is a positive correlation between dis-
tance in the embedding space and physical distance between
pairs of cities. Some exceptions to this rule are apparent. For
example, in the ER map, Denmark nodes are separated into
two groups corresponding to the Jutland and Zealand regions
of the country. These groups are respectively mapped close
to Germany or Sweden, reflecting actual network proximity
rather than purely geographical one. Even though all nodes
represent European cities, the emerging geometrical pattern of
the two maps is rather different because of the different ways
that connections are drawn in the networks. In the ER net-
work, geographical constraints affect the existence of network
connections between pairs of cities, and thus geographically
adjacent countries are adjacent in the MDS map too. Also, the
relative location of countries is congruent with their geograph-
ical position. By contrast, the absence of physical constraints
in establishing connections among cities in the EAT network
leads to a circular geometrical pattern, resembling the one
imposed in hyperbolic embedding [5]. Cities are staggered
into neat shells denoting their network centrality, and clus-
tered into narrow angular slices depending on the country they
belong to.

Now that we have an intuitive picture of the resulting
network geometry, we can proceed with the interpretation and
characterization of it. As we already observed while describ-
ing Fig. 1, a possible geometric pattern emerging from the
mapping is characterized by a hyperspherical organization of
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FIG. 1. Model-free maps of real-world networks. Two-dimensional MDS maps of the (a) European Road (ER) [28] and (b) European Air
Transportation (EAT) [29] networks. For details on the two networks see Appendix B 2. The size of nodes in the ER network is proportional
to the square of their degrees. For the EAT network, the size of nodes is proportional to the square root of their degrees. Nodes in both figures
are colored depending on the country they belong to. For sake of clarity, we label and color only nodes corresponding to a subset of European
countries and display in gray nodes not belonging to this subset. Also, only nodes with degree centrality larger than one are shown. The black
x symbol in both panels denotes the geometric center of the embedding space.

the nodes around the geometric center. To explore potential
geometric interpretations of network properties, we calculate
rank correlations between the distance of the nodes from the
geometric center in the hidden space and observable network
centrality metrics [36], including degree, betweenness [46],
eigenvector [47], Katz [48], PageRank [49], nonbacktracking
[50], k-core [51], and closeness [52] centralities (see results
in Fig. 2 and Appendix C). We find that the distance from
the center of the embedding always shows a highly negative
correlation with the closeness centrality. Further analysis sug-
gests the existence of a natural inequality between network
closeness centrality and distance from the MDS geometric
center in the case of perfect embedding (see Appendix. C).
The model-free geometry provides an elegant and intuitive
interpretation for the closeness centrality in the hidden space.
The finding also emphasizes a major difference of the model-
free embedding with hyperbolic embedding, where the radial
coordinate of a node is by definition a decreasing function of
its degree centrality.

C. Ability to preserve network information

Previous studies dealing with the MDS mapping of
networks focus on embedding spaces with two or three di-

mensions [30–32,34]. In the study of geometrical properties
of networks, we do not have to deal with a fixed value of the
dimension for the embedding space. Rather, we can use it as
a free parameter that allows us to find the right compromise
between the level of reduction of network information and
the effectiveness of the embedding in preserving graph dis-
tance. What is the minimum number of dimensions required to
achieve a reasonable level of congruence between graph and
embedding distance? The answer to this question should be
network dependent. For a network with strong geographical
constraints such as the ER network, a two-dimensional space
should suffice to provide an accurate geometrical description
of the network. For other networks, however, we may need a
higher number of dimensions.

We note that the authors of Ref. [33] studied how per-
formance of link prediction in protein-protein interaction
networks is affected by the choice of the embedding dimen-
sion of the MDS space. Here we differentiate from such an
analysis in several important respects. First, we focus on the
quality of the embedding itself and not a specific downstream
task, e.g., link prediction. This fact gives greater generality to
our analysis. Second, we systematically study the quality of
MDS embedding of synthetic networks, so that we are allowed
to vary system size while keeping other properties invariant.
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FIG. 2. Geometric interpretation of network centrality metrics.
Pairwise rank correlation between different network centrality met-
rics and the distance from the geometric center of the MDS
embedding. Here the embedding dimension is d = 100. Note that we
take absolute value of correlation coefficients for convenient com-
parison. We compute the correlation coefficients for nine real-world
networks (see Table I for details). Network centralities considered are
closeness (C), eigenvector (EV), nonbacktracking (NB), Katz (K),
k-core (KC), betweenness (B), PageRank (PR), and degree (D).

The analysis serves to understand how the dimension of the
underlying space should be chosen for a given network size.
Third and most important, we consider different types of real-
world networks, not just biological ones. In particular, the
quality of the embedding at a certain dimension depends on
the size of a real-world network in a similar way as observed
for synthetic networks.

We measure the quality of a network representation by
estimating the average value of the relative error between the
distances in the graph and the embedding spaces across all
pairs of nodes in the network (see details in Appendix D 1).
As the results of Fig. 3 show, the relative error committed
by MDS embedding in preserving graph distance quickly
saturates to an asymptotic value as the dimension of the
embedding space increases. The phenomenon is apparent
for all networks we consider, either real and synthetic. Ide-
ally, the asymptotic value of the relative error should equal
zero for a perfect embedding. We observe, however, that
perfect MDS embedding cannot be achieved even in high-
dimensional spaces. As a matter of fact, the shortest path
length between nodes exhibits persistent triangle inequality
violation when we try to embed the network into Euclidean
space, thus imposing a limit to the quality of the resulting
embedding [57–59]. We stress that the asymptotic relative
error values, although strictly larger than zero, are rather
small (see Table I). Considering the fact that the real-world
networks we consider are very heterogeneous in terms of
size, edge density, degree distribution, etc., the quality of the
MDS representations that we obtain is excellent for suffi-

FIG. 3. Preservation of graph distance in the embedding space.
(a) Relative error between the shortest path length in the graph and
the distance in the embedding space as a function of the embedding
dimension. Relative error is averaged over all pairs of nodes in the
network (see Appendix D 1 for details). We consider different types
of network models, either Poisson networks with average degree
〈k〉 = 4 or m-ary trees with m = 3, and two different network sizes
N = 100 and N = 1000. Continuous curves in the plot are obtained
by fitting data points with power-law decaying functions towards an
asymptotic relative error value (see Appendix E). (b) Same as in
panel a but for real-world networks (see Table I). (c) Optimal embed-
ding dimension as a function of the network size N (see Appendix E).
For network models, we consider different sizes. Real-world net-
works are denoted by a single point in the plot. (d) Asymptotic value
of the relative error as a function of the network size.

ciently high-dimensional embedding spaces. To quantitatively
establish an optimal value for the embedding dimension that
balances efficiency and quality of the representation, we adapt
the parametric method of Ref. [60] to our error metric (see
Appendix E). Our empirical results show that the optimal
dimension grows only logarithmically with the network size in
synthetic network models. For the real networks considered in
this paper, optimal dimension values display a similar behav-
ior as in synthetic networks. In particular, all networks have
optimal embedding dimension smaller than 50 (see Table I).

We also evaluate the ability of MDS to preserve graph dis-
tance with the Pearson correlation coefficients. The results are
qualitatively similar with relative error (see Appendix D 2).

D. Efficiency in guiding routing

To further validate the quality of the model-free geometry
learned from MDS embedding, here we test its ability of
guiding navigation on networks through greedy routing. This
is a quite important task in several contexts, including routing
of information packets on the Internet, diffusion of electric
signals in neural networks, and the flow of people or goods
in transportation and delivery networks [5,56]. We stress that
greedy routing is very different from the downstream tasks
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TABLE I. Model-free embedding of real and synthetic networks. We summarize here basic information and selected metrics of the model-
free embedding of the real-world networks and synthetic networks considered in this paper. From left to right, we report name and acronym of
the network, size N of the network, total number of edges L, average degree 〈k〉, asymptotic relative error Ê∞, optimal embedding dimension
d̂o obtained at accuracy level ε = 0.05, the success rate ps of greedy routing, and the rank correlation coefficient ρ between the distance from
the geometric center in the MDS space and the average infection arrival time of nodes. The standard deviations of Ê∞ and ps are smaller than
0.002 and 0.007, respectively, for all networks. The p values of ρ are all close to zero. For IPv4 and AS2, the values of ρ are not available due
to computational limitations and other metrics are obtained using landmark MDS (see Appendix A). Three instances of PSOM use the same
parameters N = 5000, γ = 2.1, and 〈k〉 = 5 but different values of T . Only the largest connected component is kept for each instance. Since
the PSOM instances are introduced to test greedy routing specifically, the values of ρ are not provided.

N L 〈k〉 Ê∞ d̂o (ε = 0.05) ps ρ

Real-world networks
Human brain, layer 1 (HB1) [53] 85 230 5.412 0.078 2 1.000 0.818
Human brain, layer 2 (HB2) [53] 78 218 5.590 0.089 3 1.000 0.900
European Road (ER) [28] 1039 1305 2.512 0.049 3 0.924 0.967
Air Transportation (AT) [29] 3618 14 142 7.818 0.045 9 0.904 0.859
P2P (P2P) [54] 6299 20 776 6.597 0.084 14 0.973 0.985
AS Oregon Internet (AS1) [55] 6474 12 572 3.884 0.042 11 0.903 0.785
IPv6 Internet (IPv6) [53] 5143 13 446 5.229 0.049 10 0.943 0.848
IPv4 Internet (IPv4) [53] 37 542 95 019 5.062 0.100 38 0.912 –
AS Internet (AS2) [56] 23 748 58 414 4.919 0.077 47 0.933 –
Synthetic networks
Poisson network, 〈k〉 = 4 1000 2029 4.058 0.102 9 1.000 0.986
m-ary tree, m = 3 1000 999 1.998 0.015 13 0.913 0.879
PSOM, T = 0.1 (PSOM1) [2,20] 4521 12 175 5.386 0.027 12 0.905 –
PSOM, T = 0.5 (PSOM2) [2,20] 4731 12 553 5.307 0.042 9 0.861 –
PSOM, T = 0.9 (PSOM3) [2,20] 4068 6821 3.353 0.048 9 0.877 –

usually considered in the validation of other model-free net-
work embedding methods [13–15]. It is rather a common test
bed for model-based methods, such as hyperbolic embedding
[5,34,56].

In greedy routing [38], a packet should be delivered from
the source node s to the target node t . The packet can walk
along one edge each at a time until it reaches its destination,
preferably following the shortest path connecting s to t . If one
relies on complete information about the network structure,
where every single node is aware of its graph distance from
any other node, then the protocol is optimal in the sense
that all packets are delivered with 100% success probability
and always along the actual shortest path. However, such a
procedure requires nodes to store routing tables based on
complete network information, and it is thus not scalable.
Network embedding methods, especially the MDS embedding
considered here, provides a natural solution, as the distance
between nodes in the embedding space is representative for
the distance in the graph space. While walking towards its tar-
get t , a packet sitting on the arbitrary node i may simply move
to the neighbor j of node i that is closest to t according to their
distance in the embedding space. The protocol requires each
individual node to store information only about its neighbors’
coordinates in the space, thus making it highly scalable.

Clearly under the MDS protocol, some packets may visit
the same node twice. In that case, the packet is considered lost
and the routing process unsuccessful. Also, even if a packet
is delivered, it may have not followed the true shortest path
connecting the source node to the target. Success rate [5,56]
and efficiency [10] for randomly chosen pairs of source and
target nodes are the standard metrics of performance for the

evaluation of this type of navigation protocol (see Appendix F
for details).

We test MDS greedy routing on nine real-world net-
works and three instances of the PSOM (see Table I and
Appendix B 1 for details). We use greedy routing based on
hyperbolic embedding as the term of comparison to assess
the performance of the MDS protocol, see Fig. 4. The hy-
perbolic embedding algorithm we use here is HyperMap-CN
[20], one of the best among similar methods considered in
Ref. [34]. Regardless of the network, the success rate of the
MDS greedy protocol is excellent. Hyperbolic embedding

FIG. 4. Routing protocols relying on network geometry. We com-
pare (a) success rate and (b) efficiency of greedy routing in MDS
and hyperbolic spaces for different real-world networks (acronyms
and symbols are the same as in Fig. 3). We consider also three
instances of PSOM with N = 5000, 〈k〉 = 5, and degree exponent
γ = 2.1, and different values of the temperature parameter T =
0.1, T = 0.5, T = 0.9 (respectively indicated as PSOM1, PSOM2,
and PSOM3). The markers located in the upper triangle area repre-
sent the cases where success rate or efficiency in MDS space is higher
than in hyperbolic space.
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generates protocols with performance comparable to MDS
only in some networks, likely those networks that are suitably
described by hyperbolic geometry, while it provides much
poorer performance than MDS in many other networks. The
GR-score [34,61] is also calculated to measure the perfor-
mance of greedy routing. The results are the same as for the
success rate (see Appendix F).

E. Application in mapping the contagion spreading on networks

In this final section, we provide evidence that MDS em-
bedding may be used for the geometric description of the
spatiotemporal patterns of spreading processes occurring on
networks [62]. Specifically, we hypothesize that MDS may
provide an effective representation of complex spreading
patterns in terms of standard wave equations in continuous
Euclidean space. Such a representation would have the great
potential of allowing us to leverage knowledge of the math-
ematics of waves in classic systems and eventually exploring
the analog of wave-related physical phenomena, such as in-
terference and resonance, in spreading processes occurring on
networks. The rationale of such an hypothesis stems from the
fact that infection arrival time can be approximated by net-
work centrality measures [63,64], and that the distance to the
embedding center of each node corresponds to its closeness
centrality.

To test our hypothesis, we consider the susceptible-infected
(SI) model as the spreading process (see Appendix G 1 for
details). We simulate it on different real-world and synthetic
networks. In all our simulations, we always start from a con-
figuration where all nodes are in the susceptible state, with
the exception of one node in the infected state. We measure
the time required for the infection to arrive to each node.
The source of the infection is randomly chosen, and results
are averaged over a number of instances equal to the size of
the network N . Figure 5 shows the relationship between the
average infection arrival time of each node and its distance to
the geometric center for the AT network. The high value of the
rank correlation denotes that spreading is well represented by
a wave whose front is moving in a rather homogeneous way in
the embedding space. The finding is further substantiated by
the graphical illustration of the inset of Fig. 5, where a clear
concentric wave appears in the two-dimensional representa-
tion of the network. Similar results can be observed for all
the other networks (see the correlation values in Table I and
more results in Appendix G 2). The high correlations between
the infection arrival time and the distance from the MDS
embedding center across all networks confirm our hypothesis.
We stress that similar or even slightly higher correlation can
be measured if closeness centrality is used in place of the dis-
tance from the geometric center of the embedding. However,
closeness centrality doesn’t provide us with an immediate
geometric representation of the network, and the description
of spreading in terms of wave equations becomes more com-
plicated than the one obtained in the MDS embedding, thus
Euclidean, space. Unlike other efforts to reorder the nodes of a
network to construct wavelike patterns [65,66], the connection
between the hidden geometry and contagion spreading here is
a natural implication of the model-free hidden geometry of the
networks.

FIG. 5. Geometric description of spreading in complex networks.
In the main panel, we display the scatter plot of the average infection
arrival time against the distance of nodes from the geometric center
of the MDS map. Each point in the plot is a node of the network. The
average infection arrival time is calculated based on N independent
instances of the susceptible-infected model simulated on the air
transportation (AT) network with a random seed each time, where
N is network size. The network is embedded in d = 100 dimensions.
For illustrative purposes only, we display in the inset what spreading
looks like in a two-dimensional MDS map. Nodes with larger size
and darker color are infected earlier.

III. DISCUSSION

Different approaches to the embedding of network in hid-
den geometric space exist. The model-based approaches from
the physics community can offer an immediate interpreta-
tion of the learned geometry, but work only when the model
and the network topology are congruent. The model-free ap-
proaches adopted by the computer science community have
no such limitation, but the lack of an immediate interpreta-
tion greatly hinders the human understanding of the learned
geometry. Here we consider a compromise between the two
above approaches, consisting of a model-free method with
immediate geometric interpretation. The method, called Mul-
tiDimensional Scaling (MDS), relies on the preservation of
the shortest path distance in the embedding space. MDS has
been considered previously as a viable method to embed
networks in applications such as link prediction and graph
drawing. Here we reconsider it as one of the most natural way
of learning the hidden geometry of a network and translate
network properties in geometric space. Indeed, we show that
the distance of a node from the geometric center corresponds
to its closeness centrality, and the relative positions of nodes
reflect the network community structure.

Our work shows that the MDS mapping of networks is a
meaningful operation, as the distance among pairs of nodes in
a network can be preserved to a great extent in relatively low-
dimensional vector spaces, irrespective of the specific network
considered. Furthermore, the performance of greedy routing
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on all kinds of networks embedded in the vector space using
MDS is better than, or comparable to, the networks mapped
using the state-of-the-art hyperbolic embedding method. The
MDS embedding space provides an alternative choice of the
navigable hidden space for networks, especially for the net-
works whose structures are not congruent with hyperbolic
maps.

Also, we show that the complex spreading patterns in the
original network can be mapped to a propagating wave in
the MDS embedding space. Our results suggest that MDS
embedding can be an effective tool to study dynamical process
on networks.

In this work, we use Euclidean space as the target and
geodesic distance, the most common definition of graph dis-
tance, as the input metric to be preserved. Both choices have
been made for clarity and simplicity. However, the approach
can be easily generalized to other metric spaces and defini-
tions of pairwise distance among graph nodes. For example,
it is possible to preserve the geodesic distance in hyperbolic
space to take advantage of the hyperbolic geometry, or it is
possible to replace shortest path distance with another metric
of distance or similarity, e.g., communicability [67], to ob-
tain slightly different MDS embeddings. One can also unitize
weighted path length in the embedding process to incorporate
extra information like traffic [65] or characteristics of the
dynamics [66] for better predictions of the arrival time of
infection. We leave such extensions for future work.
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APPENDIX A: MULTIDIMENSIONAL SCALING (MDS)
EMBEDDING OF NETWORKS

1. Algorithm

We take the geodesic distance matrix D of a network and
the embedding dimension d as inputs of the MDS method.
The output are the coordinates xi = (x(1)

i , . . . , x(v)
i , . . . , x(d )

i )
of all nodes i in a d-dimensional space. Coordinates are
learned from the input data through the minimization of the
stress function

S(x1, x2, . . . , xN |D) =
∑
i> j

[Di j − ||xi − x j ||]2, (A1)

where ||xi − x j || =
√∑d

v=1 (x(v)
i − x(v)

j )
2

is the Euclidean
distance between the points xi and x j in the vector space.
The Scaling by Majorizing a Complicated Function (SMA-
COF) [40] algorithm is used to solve the stress minimization
problem. We remark that the choice of the matrix D to be
the geodesic distance between all pairs of nodes is a specific
choice made in this paper. One can replace that matrix with
any other arbitrary node distance matrix. Also, the minimiza-

tion of the stress function of Eq. (A1) is the so-called metric
MDS, i.e., one of the most popular algorithms within the MDS
family. Similarly, the Euclidean distance in Eq. (A1) can be
replaced with another distance metric.

The above algorithm does not scale well with network size.
However, there are many speed-up methods available. Here
we adopt the so-called landmark MDS method [41,42]. The
approximation relies on a small set of landmark nodes to
embed the other nodes on the basis of distance-based trian-
gulation. The steps for landmark MDS are the following:

(1) Select l (l � N) landmark nodes randomly from all
nodes of the network. In this paper, we set l = 1000.

(2) Apply metric MDS to find the coordinates of land-
marks Xlands.

(3) The coordinates of the remaining nonlandmark nodes
Xnonlands are computed using the distance-based triangulation,

Xnonlands = −1

2
X†

landsB, (A2)

where X†
lands is the pseudo-inverse of Xlands and the (i, j)-entry

of B is computed as

Bi j = F 2
i j − 1

l

l∑
j=1

E2
i j, (A3)

with the matrix E ∈ Rl×l representing the distance matrix of
the landmark nodes and F ∈ Rl×(N−l ) the distance between
the landmark and nonlandmark nodes.

A different landmarks selection strategy in step 1 may af-
fect the performance of landmark MDS. Here we compare two
different landmark selection methods, random selection and
Maxmin. Maxmin randomly picks the first landmark node l1.
Then, for i ∈ {2, . . . , l}, the ith picked landmark maximizes,
over the remaining untouched nodes, the minimum shortest
path length distance to any of the existing landmarks

li = argmax
v∈V \{l1,...,li−1}

min
l∈{l1,...,li−1}

Dvl , (A4)

where V represents the set of all the nodes in the network. The
cost of using Maxmin instead of random selection amounts to
O(lN ) extra operations.

In Figs. 6 and 7, we compare the performance of landmark
MDS with random selection and Maxmin methods on the IPv6
network (N = 5143). Metric MDS is used as the baseline. For
a systematic comparison, we report running time, relative er-
ror, Pearson correlation, greedy routing success rate, average
path length, and efficiency in both figures.

Figure 6 focuses on the effect of landmark number. The
range of landmark number is l ∈ [2d, 10d]. For both land-
mark selection approaches, l = 4d is sufficient to get a
respectable low-dimensional representation of the network. In
Fig. 7 we fix the number of landmarks with l = 10d and study
the effect of embedding dimension by varying d ∈ [1, 100].
Results show that while Maxmin takes more time than random
selection, the performance is very close. Therefore, we use the
random selection approach with l = 1000 for landmark MDS
in this paper.
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FIG. 6. The performance of the landmark MDS algorithm on the IPv6 Internet network. (a) Running time, (b) relative error, (c) Pearson
correlation, (d) greedy routing success rate, (e) greedy routing average path length, and (f) greedy routing efficiency as functions of the number
of landmarks. The embedding dimension is d = 100.

2. Computational and space complexity

The naive version of the metric MDS algorithm has high
computational and space complexity. The landmark MDS re-
duces the time and space complexity significantly when the
number of landmarks is small, i.e., l � N . Here we analyze
the complexity of both algorithms.

To store the distance matrix, metric MDS requires O(N2)
space while landmark MDS has a space complexity of O(lN ),
where N is the size of network and l is the number of landmark
nodes. The computational complexity of MDS contains two
parts:

(1) Calculating distance matrix. Metric MDS requires
O(CN2) as compared to O(ClN ) for landmark MDS, where

FIG. 7. The performance of landmark MDS algorithm on the IPv6 Internet network. (a) Running time, (b) relative error, (c) Pearson
correlation, (d) greedy routing success rate, (e) greedy routing average path length, and (f) greedy routing efficiency as functions of the
embedding dimension d . The number of landmarks is l = 10d .
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C is the cost to compute each entry of the distance matrix.
For example, C equals O(L logN ) with Dijkstra’s algorithm,
where L is the number of edges in a network.

(2) Finding the embedding coordinates. The cost of metric
MDS is dominated by the majorization of the stress function,
i.e., the SMACOF algorithm. The time complexity of per
iteration of SMACOF is at least O(N2). The dominating costs
of landmark MDS are as follows: O(l2) for finding the em-
bedding coordinates of landmarks and O(dlN ) for calculating
the coordinates of nonlandmarks using the distance-based tri-
angulation, where d is the dimension of the embedding space.

In summary, metric MDS has computational complexity
O(CN2 + N2) and space complexity O(N2), while landmark
MDS has computational complexity O(ClN + dlN + l2) and
space complexity O(lN ).

We use landmark MDS for networks with more than 7000
nodes in this work.

APPENDIX B: NETWORKS

1. Network data

We use both synthetic and real-world networks in this
paper. All networks are unweighted and undirected. The nine
real-world networks include two human brain networks, two
transportation networks, one P2P network, and four snapshots
of the Internet. The synthetic networks include the following:

(1) Poisson networks: They are generated by the config-
uration model with Poisson degree distribution. The size of
network N and average degree 〈k〉 are two tunable parameters.

(2) m-ary trees: These are rooted trees with each node hav-
ing no more than m children. We control both the parameter
m and the size of the tree N .

(3) Popularity-similarity-optimization model (PSOM)
[2,20]: PSOM is a growing network model that assumes
nodes to be connected depending on their distance in a hidden
hyperbolic space. The parameters of PSOM are average
degree 〈k〉, exponent γ of the power-law degree distribution
P(k) ∼ k−γ , and temperature T . Temperature T controls the
average clustering in the network, which is maximized at
T = 0 and decreases to zero when T approaches 1.

Details of the real-word networks and synthetic network
instances can be found in Table I.

2. Network processing for visualization

For clarity, only parts of the European Road (ER) network
[28] and the Air Transportation (AT) network [29] are visual-
ized in Fig. 1. The original ER graph has N = 1039 nodes
and L = 1305 edges. The nodes represent European cities
and an edge between two nodes represents a road connect-
ing them. We remove nodes corresponding to cities in Asian
countries (Turkmenistan, Uzbekistan, Tajikistan, Kyrgyzstan,
Iran, Syria, and Iraq) and transcontinental countries (Turkey,
Georgia, Armenia, Kazakhstan, and Azerbaijan) as well as
two nodes located in Kosovo, because the country is not rep-
resented in the AT network. In the end, we obtain a subgraph
of ER with N = 859 nodes and L = 1098 edges.

The original AT network has N = 3618 nodes and L =
14 142 edges. The nodes represent cities around the world.
A connection between two nodes indicates the existence of at

least one flight between them from November 1st to 7th, 2000.
We obtain the European Air Transportation (EAT) network
with N = 506 nodes and L = 2382 edges by keeping the
nodes located in countries that appear in the ER network.

The subgraphs are only used in visualizing Fig. 1. The
original networks are used elsewhere.

APPENDIX C: RELATIONSHIP BETWEEN THE
GEOMETRIC DISTANCE OF NODES IN MDS EMBEDDING

SPACE AND NETWORK CLOSENESS CENTRALITY

The network closeness centrality of node i equals the in-
verse of the average shortest path distance of the node from
all nodes in the network:

Ci = N∑
j Di j

. (C1)

A perfect MDS embedding means that

||xi − x j || = a Di j

for all pairs of nodes i, j, with a > 0 arbitrary constant. We
can write that

N C−1
i =

∑
j

Di j = a−1
∑

j

||xi − x j ||

� a−1
∑

j

||xi|| + a−1
∑

j

||x j ||,

where we used the triangle inequality. The center of the em-
bedding corresponds to the origin of the reference frame. We
have that

∑
j ||xi|| = N ||xi|| = N ri, with ri distance of node

i from the geometric center of the embedding. Also, we can
write that

∑
j ||x j || = N 〈r〉 with 〈d〉 the average value of the

distance of points from the geometric center. We can finally
write the inequality

Ci �
a

ri + 〈r〉 . (C2)

Our numerical results of Fig. 2 and of Fig. 8 indicate that
the inequality of Eq. (C2) is tight in all networks considered
in this paper. Other node centrality metrics also correlate
with the distance of a node from the geometric center of the
embedding. However, results seem network dependent.

APPENDIX D: EVALUATION METRICS
FOR MDS EMBEDDING

1. Relative error

We quantify the ability of MDS to preserve network prox-
imity by estimating the relative error

E = min
γ>0

[
2

N (N − 1)

∑
i> j

|Di j − γ Xi j |
Di j

]
, (D1)

where, for brevity of notation, we used Xi j = ||xi − x j ||. Low
values of E correspond to good embeddings. Specifically, E =
0 is obtained for an embedding that perfectly preserves the
pairwise distance for all node pairs.

Note that for large networks it’s infeasible to test every
possible pair of nodes. For a network with N > 500, we
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FIG. 8. Pairwise relation between different centralities and the distance of a node from the geometric center in MDS embedding space
(r) for different real-world networks. Network centralities considered are closeness (C), eigenvector (EV), nonbacktracking (NB), Katz (K),
k-core (KC), betweenness (B), PageRank (PR), and degree (D). The embedding dimension is 100. The results for IPv4 and AS2 are obtained
by landmark MDS with the number of landmarks l = 1000. For clarity, we show only 10% of all nodes if the network size is larger than 1000.

choose 105 random pairs of nodes to approximate the relative
error.

2. Pearson correlation coefficient

The Pearson correlation coefficient between the pairwise
shortest path length in the original networks and distance in
the embedding space can be an alternative metric to measure
how well the MDS embedding preserves the distance. The rel-
ative error and Pearson correlation values are all in the interval
[0, 1]. For perfect embedding, the relative error should be zero
and the Pearson correlation should be one.

Figure 9 replicates Fig. 3, but with the Pearson correlation
coefficient as the evaluation metric. Similar to relative error,
the results here also quickly saturate to an asymptotic value as
the embedding dimension increases. The optimal dimensions
obtained using Pearson correlation coefficients are slightly
different from the ones calculated using relative error, but the
values are still very small for all networks considered.

APPENDIX E: ESTIMATING THE OPTIMAL DIMENSION
OF NETWORKS

To estimate the optimal dimension of MDS embedding for
different networks, we use the method introduced in Ref. [60].
Assuming the plateau value E∞ of the relative error E corre-
sponds to the best geometric description that the embedding
algorithm can achieve, the optimal dimension do(ε) at accu-
racy level ε is defined as

do(ε) = arg min
d

(E (d ) − E∞ < ε), (E1)

i.e., the minimal d value such that the difference between
E (d ) and the optimum E∞ is at most ε. Our numerical tests
indicate that E (d ) can be well described by the function

E (d ) = E∞ + sd−α. (E2)

We fit data points to Eq. (E2) and obtain the best estimates of
the parameters Ê∞, ŝ and α̂. The best estimate of the optimal
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FIG. 9. Same as Fig. 3, but with the Pearson correlation ρ be-
tween the shortest path length and distance in the embedding space
as the evaluation metric. For Poisson networks and P2P network, the
continuous curves are obtained by fitting data points with exponential
function ρ(d ) = ρ∞ − seβd . For tree networks and other real-world
networks, the data points are fitted with power-law function ρ(d ) =
ρ∞ − sdα . The optimal dimension is also calculated at the accuracy
level ε = 0.05.

embedding dimension d̂o(ε) is calculated as

d̂o(ε) =
(

ŝ

ε

)1/α̂

. (E3)

The estimated optimal dimensions and the asymptotic relative
error Ê∞ are shown in Table I.

APPENDIX F: GREEDY ROUTING

We randomly select 10 000 source-target pairs. Starting
from the source node, the packet tries to reach the target node
using the greedy strategy described in the main text. Two
outcomes are possible: (1) the packet reaches its destination
in R steps or (2) the packet fails to reach its target. To evaluate
the performance of greedy routing, three metrics are used:

(1) The success rate ps defined as the ratio of correctly
delivered packets over total number of packets considered [5].

(2) Efficiency η = ps〈1/R〉, where 〈1/R〉 represents the
mean value of the inverse of the path length R obtained for
each packet successfully delivered [10].

(3) GR-score = 2
N (N−1)

∑
i> j

Di j

Ri j
, where Di j is the shortest

path length from i to j in graph and Ri j is the greedy routing
path length from i to j. The GR-score considers all successful
and unsuccessful delivering. When greedy routing is unsuc-
cessful, Ri j is infinite and Di j/Ri j = 0 [34].

In the main text, we use the success rate and efficiency to
evaluate the performance of greedy routing. Here we imple-
ment the GR-score for the evaluation. As shown in Fig. 10,
the result of the GR-score is similar to the success rate in main
text.

FIG. 10. Same analysis as in Fig. 4, but the performance is mea-
sured by the GR-score.

In our tests, we compare the performance of MDS and hy-
perbolic embedding in guiding greedy routing. Both methods
have a tunable parameter that can affect the navigation perfor-
mance. In MDS embedding, the parameter is the dimension
d of the embedding space. We consider discrete values in
[1, 100] for d . In hyperbolic embedding, the parameter is tem-
perature T . We try different values in [0, 1] for T . Results in
Fig. 4 are obtained using the parameter values that maximize
the metrics for both methods. Detailed results are shown in
Fig. 11.

APPENDIX G: SUSCEPTIBLE-INFECTED
PROCESS ON NETWORKS

1. Susceptible-infected model

In the susceptible-infected (SI) model, the state of the
individuals in the network is either susceptible or infected.
Susceptible individuals do not carry the disease, but they can
be infected. Infected individuals carry the disease, and they
can spread it to susceptible individuals. The rate of infection
is β.

We use the Gillespie algorithm to simulate SI dynamics
[68]. The steps of the algorithms are as follows:

(1) At time t = 0, randomly select one infected individual,
and all other individuals are susceptible.

(2) Determine the time interval �t :

�t = − log(u)

β
	

SI
, (G1)

where u is a random number extracted from the uniform
distribution with support in the interval (0, 1), and

	

SI is the
number of susceptible-infection pairs.

(3) Randomly select a susceptible-infection pair and let
the susceptible individual be infected. Increase time from t to
t + �t .

(4) Iterate step 2 and step 3 until all susceptible individuals
become infected.
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FIG. 11. The comparison of greedy routing success rate ps, average path length 〈R〉, efficiency η, and GR-score on MDS and hyperbolic
embedding for different real-world networks. The solid lines represent results based on MDS embedding, and the dashed lines are the results
based on hyperbolic embedding.

For each network, we simulate the SI process N times to
get the average arrival time of infection for every node where
N is the network size.

2. Susceptible-Infected process on additional networks

In the main text, we show the relation between average
infection arrival time and the distance of nodes from the
geometric center of the MDS map and the spreading pattern

FIG. 12. Scatter plot of the average infection arrival time against the distance of nodes from the geometric center of the MDS map for
different real-world networks and synthetic networks. Each point in the plot represents a node in the network. The average infection arrival
time is calculated based on N independent simulations of the susceptible-infected model with a random seed each time, where N is the
network size. The network is embedded with d = 100. For illustrative purposes only, we display in the inset what the spreading looks like in a
two-dimensional MDS map. Nodes with larger size and darker color are infected earlier.
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for the air transportation network (Fig. 5). Here we report the
results for other real-world and synthetic networks (Fig. 12).
For all networks tested, the rank correlations are very high,

and clear concentric wave patterns in the two-dimensional
representation of the networks can be seen in the insets of
Fig. 12.
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